Aluminum alloys are renowned for their lightweight nature, resistance to oxidation, and impressive mechanical properties. Despite these advantages, their mechanical performance deteriorates significantly in extreme environments. Herein, we present an innovative solution by developing aluminum matrix composites (AMCs) that incorporate 3D printed alumina ceramic lattices. Our investigation demonstrates a remarkable 112.4 % increase in the strength of AMCs compared to pure aluminum, with a concurrent 54.8 % improvement in modulus under identical conditions. Additionally, as the volume fraction of the ceramic lattice varies from 0.21 to 0.45, the modulus of AMCs exhibits a noteworthy increase, ranging from 96.2 to 106.5 GPa, surpassing that of pure aluminum (68.8 GPa). Notably, even at temperatures of up to 300 degrees C, the strength of the Al2O3-Al composite matrix remains stable at 477.3 MPa. X-ray computed tomography analysis elucidates that the structural integrity of these composites predominantly relies on the load-bearing capacity of the ceramic lattices, complemented by the damping effect provided by the aluminum matrix. This innovative approach not only paves the way for scalable production of high-strength metal alloys in the industrial sector but also holds promise for substantial economic opportunities in the near future.