A Segmentation Method of 3D Liver Image Based on Multi-scale Feature Fusion and Coordinate Attention Mechanism

被引:2
|
作者
Zhang, Meng [1 ,2 ,3 ]
Zhang, Xiaolong [1 ,2 ,3 ]
Deng, He [1 ,2 ,3 ]
Ren, Hongwei [4 ]
机构
[1] Wuhan Univ Sci & Technol, Sch Comp Sci & Technol, Wuhan, Hubei, Peoples R China
[2] Wuhan Univ Sci & Technol, Inst Big Data Sci & Engn, Wuhan, Hubei, Peoples R China
[3] Hubei Key Lab Intelligent Informat Proc & Real Ti, Wuhan, Hubei, Peoples R China
[4] Wuhan Univ Sci & Technol, Tianyou Hosp, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
3D liver image; semantic segmentation; multi-scale feature fusion; coordinate attention; deep supervision;
D O I
10.1007/978-981-99-4749-2_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Due to the high similarity of organs in 3D liver image and the use of simple connection by U-Net to fuse different semantic features, the segmentation accuracy of network needs to be improved. To solve these problems, this paper proposes a 3D liver semantic segmentation method based on multi-scale feature fusion and coordinate attention mechanism. Firstly, in the encoder section of U-Net, the multi-scale feature fusion module was used to capture multi-scale features; Then, coordinate attention mechanism was used to fuse low-level features and high-level features to locate regions of interest; Finally, the segmentation effect of edge details was improved through a deep supervision mechanism. The experimental results show that: on the LiTS dataset, the dice similarity coefficient (DSC) of this method reaches 96.5%. Compared with the U-3-Net + DC method, the DSC increases by 0.1%, and the relative volume difference (RVD) decreases by 1.09%; On the CHAOS dataset, the DSC of this method reaches 96.8%, and compared with CANet, the DSC increases by 0.2%; On the MRI dataset of a hospital, the DSC of this method reaches 97.2%.
引用
收藏
页码:3 / 15
页数:13
相关论文
共 50 条
  • [21] Remote Sensing Object Detection Method Based on Attention Mechanism and Multi-scale Feature Fusion
    Liu, Yang
    Xiao, Yewei
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7155 - 7160
  • [22] Semantic Segmentation Network of Pathological Images of Liver Tissue Based on Multi-scale Feature and Attention Mechanism
    Zhang A.
    Kang Y.
    Wu Z.
    Cui L.
    Bu Q.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (04): : 375 - 384
  • [23] A Novel Hybridoma Cell Segmentation Method Based on Multi-Scale Feature Fusion and Dual Attention Network
    Lu, Jianfeng
    Ren, Hangpeng
    Shi, Mengtao
    Cui, Chen
    Zhang, Shanqing
    Emam, Mahmoud
    Li, Li
    ELECTRONICS, 2023, 12 (04)
  • [24] MFA-UNet: a vessel segmentation method based on multi-scale feature fusion and attention module
    Cao, Juan
    Chen, Jiaran
    Gu, Yuanyuan
    Liu, Jinjia
    FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [25] Underwater Image Enhancement Based on Multi-Scale Feature Fusion and Attention Network
    Liu Y.
    Liu M.
    Lin S.
    Tao Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (05): : 685 - 695
  • [26] Liver segmentation network based on detail enhancement and multi-scale feature fusion
    Lu, Tinglan
    Qin, Jun
    Qin, Guihe
    Shi, Weili
    Zhang, Wentao
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [27] MFANet: Multi-scale feature fusion network with attention mechanism
    Wang, Gaihua
    Gan, Xin
    Cao, Qingcheng
    Zhai, Qianyu
    VISUAL COMPUTER, 2023, 39 (07): : 2969 - 2980
  • [28] MFANet: Multi-scale feature fusion network with attention mechanism
    Gaihua Wang
    Xin Gan
    Qingcheng Cao
    Qianyu Zhai
    The Visual Computer, 2023, 39 : 2969 - 2980
  • [29] Semantic Segmentation of Remote Sensing Image via Self-Attention-Based Multi-Scale Feature Fusion
    Guo D.
    Fu Y.
    Zhu Y.
    Wen W.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2023, 35 (08): : 1259 - 1268
  • [30] Automatic 3D fault segmentation based on multi-scale feature fusion model with compound loss function
    Liu, Shengkang
    Chen, Guoxu
    Zhao, Ping
    Zhang, Mingming
    Liu, Wanchang
    Liu, Tingwei
    EARTH SCIENCE INFORMATICS, 2024, 17 (04) : 2937 - 2957