A Novel Deep Neural Network Framework for State Evaluation and Fault Diagnosis in Distribution Station

被引:0
|
作者
Wang, Xinping [1 ]
Li, Chunpeng [1 ]
Zhang, Hao [1 ]
Zhu, Tianze [1 ]
机构
[1] Jiangsu Frontier Elect Technol Co Ltd, Nanjing, Peoples R China
关键词
State Evaluation; Distribution Station; Deep Learning; Signature Matrices; Fault Diagnosis;
D O I
10.1109/CEEPE62022.2024.10586391
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the growing demand for reliable power supply from smart grid infrastructures, the assessment of operational status and fault diagnosis in distribution substations is becoming increasingly important. Traditional methods often fall short in providing real-time and accurate analysis, necessitating advancements in intelligent monitoring systems. To address this gap, a deep neural network framework, called SFCED, is proposed specifically for real-time state evaluation and fault diagnosis in distribution substations. This framework uses signature matrices to capture and represent correlations within multivariate time-series data, enabling a comprehensive understanding of distribution substation dynamics. SFCED integrates a fully convolutional encoder-decoder architecture, enabling the extraction of deep features from data and accurate reconstruction of system states. The empirical results, obtained from extensive comparisons with conventional CNN and LSTM Encoder-Decoder models, confirm the effectiveness of SFCED, particularly in achieving a high balance between precision and recall. The research demonstrates the practical applicability of SFCED in real-world scenarios, offering significant improvements in maintenance and operation efficiency for intelligent distribution substations.
引用
收藏
页码:505 / 510
页数:6
相关论文
共 50 条
  • [21] An intelligent fault diagnosis model based on deep neural network for few-shot fault diagnosis
    Wang, Cunjun
    Xu, Zili
    NEUROCOMPUTING, 2021, 456 : 550 - 562
  • [22] Neural network based framework for fault diagnosis in batch chemical plants
    Ruiz, D
    Nougués, JM
    Calderón, Z
    Espuña, A
    Puigjaner, L
    COMPUTERS & CHEMICAL ENGINEERING, 2000, 24 (2-7) : 777 - 784
  • [23] A novel unsupervised domain adaptation based on deep neural network and manifold regularization for mechanical fault diagnosis
    Zhang, Zhongwei
    Chen, Huaihai
    Li, Shunming
    An, Zenghui
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2020, 31 (08)
  • [24] A novel deep neural network based on an unsupervised feature learning method for rotating machinery fault diagnosis
    Cheng, Chun
    Liu, Wenyi
    Wang, Weiping
    Pecht, Michael
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2021, 32 (09)
  • [25] Binary Classification Fault Diagnosis for Octocopter Using Deep Neural Network
    Park, Jongho
    Kim, Jong-Han
    Jung, Yeondeuk
    2021 29TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2021, : 121 - 125
  • [26] Fault Diagnosis of UHVDC Transmission Line Based on Deep Neural Network
    Wang, Lei
    Zhao, Qingsheng
    Liang, Dingkang
    2022 IEEE/IAS INDUSTRIAL AND COMMERCIAL POWER SYSTEM ASIA (I&CPS ASIA 2022), 2022, : 445 - 450
  • [27] An adaptive deep convolutional neural network for rolling bearing fault diagnosis
    Wang Fuan
    Jiang Hongkai
    Shao Haidong
    Duan Wenjing
    Wu Shuaipeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2017, 28 (09)
  • [28] A deep neural network based fault diagnosis method for centrifugal chillers
    Li, G. N.
    Hu, Y. P.
    Mao, Q. J.
    Zhou, C. H.
    Jiao, L. Z.
    4TH ASIA CONFERENCE OF INTERNATIONAL BUILDING PERFORMANCE SIMULATION ASSOCIATION, 2019, 238
  • [29] INTELLIGENT FAULT DIAGNOSIS OF ROTATING MACHINERY BASED ON DEEP NEURAL NETWORK
    Zhang, Xiuchun
    Xia, Hong
    Liu, Yongkang
    Zhu, Shaomin
    Jiang, Yingying
    Zhang, Jiyu
    Liu, Jie
    Yin, Wenzhe
    PROCEEDINGS OF 2024 31ST INTERNATIONAL CONFERENCE ON NUCLEAR ENGINEERING, VOL 1, ICONE31 2024, 2024,
  • [30] A sparse denoising deep neural network for improving fault diagnosis performance
    Zhou, Funa
    Sun, Tong
    Hu, Xiong
    Wang, Tianzhen
    Wen, Chenglin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2021, 15 (08) : 1889 - 1898