Computational Fluid Dynamics Simulations of a Novel Dual-Throat Bent Nozzle

被引:0
|
作者
Kim, Homin [1 ]
Han, Dong-Hun [1 ]
Jin, Suyeong [1 ,2 ]
Hong, Jung-Wuk [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Civil & Environm Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] CALTECH, Div Engn & Appl Sci, Pasadena, CA 91125 USA
关键词
Dual-throat bent nozzle; Hybrid thrust vectoring; Computational fluid dynamics; Duct nozzle; VECTORING CONTROL; THRUST; INJECTION; MODEL;
D O I
10.1007/s42405-024-00849-8
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Thrust vectoring is a key technology that enables vertical takeoff and landing by controlling the direction of the thrust produced by a jet engine. A new hybrid thrust vectoring solution, the dual-throat bent nozzle (DTBN), has been introduced, and its performance is evaluated using computational fluid dynamics simulations. Both a 2D axisymmetric model and a 3D model with symmetry plane are developed with the k-omega\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} SST turbulence model. The numerical results are validated against experimental data for a dual-throat nozzle by comparing the system resultant thrust ratio Cfg,sys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{fg,sys}$$\end{document}, primary nozzle discharge coefficient Cd,prim\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C_{d,prim}$$\end{document}, and upper wall pressure Pu\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$P_u$$\end{document}. The DTBN design incorporates a transition region in the middle section, and its thrust vectoring angle is analyzed by varying the bent angle. Compared to the conventional three-bearing swivel nozzle-based duct nozzle, the DTBN demonstrates significant improvement in thrust vectoring angle and is expected to further advance hybrid thrust vectoring for vertical takeoff and landing applications.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Computational Fluid Dynamics Simulations of Hemodynamics in Plaque Erosion
    Campbell I.C.
    Timmins L.H.
    Giddens D.P.
    Virmani R.
    Veneziani A.
    Rab S.T.
    Samady H.
    McDaniel M.C.
    Finn A.V.
    Taylor W.R.
    Oshinski J.N.
    Campbell, I. C. (iancampbell@gatech.edu), 1600, Springer Science and Business Media, LLC (04): : 464 - 473
  • [32] Investigating the microlubrication flow inside the nozzle using computational fluid dynamics
    Bhise, Dipali K.
    Patil, Bhushan T.
    Shaikh, Vasim A.
    Deshmukh, Sujata P.
    MATERIALS TODAY-PROCEEDINGS, 2020, 27 : 492 - 496
  • [33] COMPUTATIONAL FLUID DYNAMICS SIMULATION OF SYNGAS NOZZLE OF GAS TURBINE FOR SYNGAS
    Zhang, Bo
    Qin, Ye
    Shi, Shaoping
    Yan, Shu
    Mu, Yanfei
    Liu, Xin
    Chen, Xinming
    Guo, Yutong
    Zeng, Chongji
    PROCEEDINGS OF THE ASME TURBO EXPO: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, 2019, VOL 4A, 2019,
  • [34] Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining
    Venugopal, S.
    Chandresekaran, M.
    Muthuraman, V.
    Sathish, S.
    INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING RESEARCH, 2017, 183
  • [35] Molecular dynamics pre-simulations for nanoscale computational fluid dynamics
    Holland, David M.
    Lockerby, Duncan A.
    Borg, Matthew K.
    Nicholls, William D.
    Reese, Jason M.
    MICROFLUIDICS AND NANOFLUIDICS, 2015, 18 (03) : 461 - 474
  • [36] Molecular dynamics pre-simulations for nanoscale computational fluid dynamics
    David M. Holland
    Duncan A. Lockerby
    Matthew K. Borg
    William D. Nicholls
    Jason M. Reese
    Microfluidics and Nanofluidics, 2015, 18 : 461 - 474
  • [37] Model reduction for flight dynamics simulations using computational fluid dynamics
    Pagliuca, Giampaolo
    Timme, Sebastian
    AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 69 : 15 - 26
  • [38] Computational Fluid Dynamics Analysis of Nozzle Plume Effects on Sonic Boom Signature
    Bui, Trong T.
    JOURNAL OF AIRCRAFT, 2011, 48 (02): : 368 - 380
  • [39] Computational Fluid Dynamics Based Aerodynamic Optimization of the Wind Tunnel Primary Nozzle
    Kolar, Jan
    Dvorak, Vaclav
    4TH INTERNATIONAL MEETING OF ADVANCES IN THERMOFLUIDS (IMAT 2011), PT 1 AND 2, 2012, 1440 : 293 - 299
  • [40] Design study of printer nozzle spray dryer by computational fluid dynamics modeling
    Jaskulski, Maciej
    Thi Thu Hang Tran
    Tsotsas, Evangelos
    DRYING TECHNOLOGY, 2020, 38 (1-2) : 211 - 223