Tailoring the Solid Electrolyte Interphase Composition on Lithium Metal Anodes by the Choice of Ionic Liquid during Mechanochemical Modification

被引:0
|
作者
Wellmann, Julia [1 ]
Hepp, Marco [2 ]
Ogolla, Charles Otieno [2 ]
Mohrhardt, Marvin [1 ]
Wankmiller, Bjoern [3 ]
Lennartz, Peter [1 ]
Rodehorst, Uta [4 ]
Hansen, Michael Ryan [3 ]
Winter, Martin [1 ,4 ]
Brunklaus, Gunther [1 ]
Butz, Benjamin [2 ]
Paillard, Elie [5 ]
机构
[1] Forschungszentrum Julich IMD-4, Helmholtz Inst Munster, Corrensstr 46, D-48149 Munster, Germany
[2] Univ Siegen, Micro & Nanoanalyt Grp, Paul Bonatz Str 9-11, D-57076 Siegen, Germany
[3] Univ Munster, Inst Phys Chem, Corrensstr 28-30, D-48149 Munster, Germany
[4] Univ Munster, MEET Battery Res Ctr, Corrensstr 46, D-48149 Munster, Germany
[5] Politecn Milan, DOE, Via Lambruschini 4, I-20156 Milan, Italy
关键词
Ionic liquids; lithium metal anodes; lithium metal batteries; mechanochemical modification; solid electrolyte interphase; ELECTROCHEMICAL PROPERTIES; PHYSICOCHEMICAL PROPERTIES; ELECTRODEPOSITION; BEHAVIOR; SURFACE; SEI;
D O I
10.1002/admi.202500034
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium metal batteries (LMBs) have a great potential to become widely commercialized. However, an improved solid electrolyte interphase (SEI) is needed to enable safe long-term cycling. Here, further a mechanochemical modification method is developed, where lithium metal is roll-pressed in contact with ionic liquids (ILs). The choice of IL allows tailoring the composition and thickness of the SEI, examined via X-ray photoelectron spectroscopy and cryo transmission electronic microscopy, to tune its properties and enable low overvoltage, smooth deposit morphology, and cycling at high current densities. Among the examined ILs, N-butyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide (Pyr(14)FSI) provides the best results, facilitating stable cycling in a carbonate-based electrolyte at current densities up to 10 mA cm(-2), which results from the suppression of dendrite formation and electrolyte consumption presumably due to a better lithium ion conductivity and homogeneity of the SEI. Furthermore, the modified lithium metal anodes show a good compatibility with NMC cathodes, which is crucial for high-voltage LMB applications. Finally, modified lithium anodes are used in combination with a ternary solid polymer electrolyte, showing also in this context, a much-improved cycling performance.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A Flexible Solid Electrolyte Interphase Layer for Long-Life Lithium Metal Anodes
    Li, Nian-Wu
    Shi, Yang
    Yin, Ya-Xia
    Zeng, Xian-Xiang
    Li, Jin-Yi
    Li, Cong-Ju
    Wan, Li-Jun
    Wen, Rui
    Guo, Yu-Guo
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (06) : 1505 - 1509
  • [22] The Effect of 1-Pentylamine as Solid Electrolyte Interphase Precursor on Lithium Metal Anodes
    Ding, Markus S.
    Koch, Stephan L.
    Passerini, Stefano
    ELECTROCHIMICA ACTA, 2017, 240 : 408 - 414
  • [23] Stable Lithium Metal Anodes with a GaOx Artificial Solid Electrolyte Interphase in Damp Air
    Han, Bing
    Zou, Yucheng
    Ke, Ruohong
    Li, Tengteng
    Zhang, Zhen
    Wang, Chaoyang
    Gu, Meng
    Deng, Yonghong
    Yao, Jianquan
    Meng, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (18) : 21467 - 21473
  • [24] Regulating the Inner Helmholtz Plane for Stable Solid Electrolyte Interphase on Lithium Metal Anodes
    Yan, Chong
    Li, Hao-Ran
    Chen, Xiang
    Zhang, Xue-Qang
    Cheng, Xin-Bing
    Xu, Rui
    Huang, Jia-Qi
    Zhang, Qiiang
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (23) : 9422 - 9429
  • [25] Identification of LiH and nanocrystalline LiF in the solid-electrolyte interphase of lithium metal anodes
    Shadike, Zulipiya
    Lee, Hongkyung
    Borodin, Oleg
    Cao, Xia
    Fan, Xiulin
    Wang, Xuelong
    Lin, Ruoqian
    Bak, Seong-Min
    Ghose, Sanjit
    Xu, Kang
    Wang, Chunsheng
    Liu, Jun
    Xiao, Jie
    Yang, Xiao-Qing
    Hu, Enyuan
    NATURE NANOTECHNOLOGY, 2021, 16 (05) : 549 - 554
  • [26] Tailoring the Preformed Solid Electrolyte Interphase in Lithium Metal Batteries: Impact of Fluoroethylene Carbonate
    Weintz, Dominik
    Kuehn, Sebastian P.
    Winter, Martin
    Cekic-Laskovic, Isidora
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (46) : 53526 - 53532
  • [27] Ionic conductivity and mechanical properties of the solid electrolyte interphase in lithium metal batteries
    Park, Seongsoo
    Chaudhary, Rashma
    Han, Sang A.
    Qutaish, Hamzeh
    Moon, Janghyuk
    Park, Min-Sik
    Kim, Jung Ho
    ENERGY MATERIALS, 2023, 3 (01):
  • [28] Analysis of the solid electrolyte interphase formed with an ionic liquid electrolyte for lithium-sulfur batteries
    Xiong, Shizhao
    Xie, Kai
    Blomberg, Erik
    Jacobsson, Per
    Matic, Aleksandar
    JOURNAL OF POWER SOURCES, 2014, 252 : 150 - 155
  • [29] The Origin of Fast Lithium-Ion Transport in the Inorganic Solid Electrolyte Interphase on Lithium Metal Anodes
    Ma, Xia-Xia
    Shen, Xin
    Chen, Xiang
    Fu, Zhong-Heng
    Yao, Nan
    Zhang, Rui
    Zhang, Qiang
    SMALL STRUCTURES, 2022, 3 (08):
  • [30] Measurement of mechanical and fracture properties of solid electrolyte interphase on lithium metal anodes in lithium ion batteries
    Yoon, Insun
    Jurng, Sunhyung
    Abraham, Daniel P.
    Lucht, Brett L.
    Guduru, Pradeep R.
    ENERGY STORAGE MATERIALS, 2020, 25 : 296 - 304