Early Diagnosis of Liver Disease Using Machine Learning Techniques

被引:0
|
作者
Hegde, Nagaratna P. [1 ]
Vikkurty, Sireesha [1 ]
Sriperambuduri, Vinay Kumar [1 ]
Gogune, Sruthi [1 ]
Anish, Palabatla [1 ]
Thanneru, Praneeth [1 ]
机构
[1] Vasavi Coll Engn, Dept CSE, Hyderabad, Telangana, India
关键词
Data Analysis; Confusion Matrix; Data Streamlining; Correlation Matrix; False Negatives; Accuracy;
D O I
10.1007/978-981-97-8031-0_120
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Liver diseases are a global health concern, and early diagnosis is crucial for effective treatment. While traditional liver-function laboratory tests provide valuable information, they may not say much about any emerging or underlying illnesses. In this study, we explore the efficacy of machine learning algorithms in predicting the risk of liver disease using the Indian Liver Patient Dataset. This could help patients concerned opt for timely and effective treatment.
引用
收藏
页码:1138 / 1143
页数:6
相关论文
共 50 条
  • [31] Automatic diagnosis of common carotid artery disease using different machine learning techniques
    Abd-Ellah, Mahmoud Khaled
    Khalaf, Ashraf A. M.
    Gharieb, Reda R.
    Hassanin, Dina A.
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021, 14 (1) : 113 - 129
  • [32] A database for using machine learning and data mining techniques for coronary artery disease diagnosis
    Alizadehsani, R.
    Roshanzamir, M.
    Abdar, M.
    Beykikhoshk, A.
    Khosravi, A.
    Panahiazar, M.
    Koohestani, A.
    Khozeimeh, F.
    Nahavandi, S.
    Sarrafzadegan, N.
    SCIENTIFIC DATA, 2019, 6 (1)
  • [33] A database for using machine learning and data mining techniques for coronary artery disease diagnosis
    R. Alizadehsani
    M. Roshanzamir
    M. Abdar
    A. Beykikhoshk
    A. Khosravi
    M. Panahiazar
    A. Koohestani
    F. Khozeimeh
    S. Nahavandi
    N. Sarrafzadegan
    Scientific Data, 6
  • [34] A Model for Classification and Diagnosis of Skin Disease using Machine Learning and Image Processing Techniques
    AlDera, Shaden Abdulaziz
    Ben Othman, Mohamed Tahar
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (05) : 252 - 259
  • [35] Angiographic prognosis and diagnosis of heart disease by using unsupervised and supervised Machine Learning techniques
    Sbirna, Sebastian
    Sbirna, Liana-Simona
    2020 24TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2020, : 84 - 91
  • [36] Machine Learning Techniques for the Diagnosis of Alzheimer's Disease: A Review
    Tanveer, M.
    Richhariya, B.
    Khan, R. U.
    Rashid, A. H.
    Khanna, P.
    Prasad, M.
    Lin, C. T.
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2020, 16 (01)
  • [37] Improving Alzheimer's Disease Diagnosis with Machine Learning Techniques
    Trambaiolli, Lucas R.
    Lorena, Ana C.
    Fraga, Francisco J.
    Kanda, Paulo A. M.
    Anghinah, Renato
    Nitrini, Ricardo
    CLINICAL EEG AND NEUROSCIENCE, 2011, 42 (03) : 160 - 165
  • [38] Imaging and machine learning techniques for diagnosis of Alzheimer's disease
    Mirzaei, Golrokh
    Adeli, Anahita
    Adeli, Hojjat
    REVIEWS IN THE NEUROSCIENCES, 2016, 27 (08) : 857 - 870
  • [39] Disease Diagnosis System using Machine Learning
    Kamble, Shailesh D.
    Patel, Pawan
    Fulzele, Punit
    Bangde, Yash
    Musale, Hitesh
    Gaddamwar, Saipratik
    JOURNAL OF PHARMACEUTICAL RESEARCH INTERNATIONAL, 2021, 33 (33B) : 185 - 194
  • [40] Bearing Fault Diagnosis Using Machine Learning and Deep Learning Techniques
    Dhanush, N. Sai
    Ambika, P. S.
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 309 - 321