Interfacial performance evolution of ceramics-in-polymer composite electrolyte in solid-state lithium metal batteries

被引:0
|
作者
Cheng, Ao [1 ]
Sun, Linlin [2 ]
Menga, Nicola [3 ]
Yang, Wanyou [4 ]
Zhang, Xin [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Changan Univ, Sch Mech Engn, Xian 710018, Peoples R China
[3] Polytech Univ Bari, Dept Mech Math & Management, Via E Orabona 4, I-70125 Bari, Italy
[4] Univ Elect Sci & Technol China, Sch Aeronaut & Astronaut, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
Contact model; Solid composite electrolytes; Interfacial resistance; Viscoelasticity; Fast Fourier Transform; DISCRETE CONVOLUTION; VISCOELASTIC LAYERS; SPHERICAL INDENTER; ELASTIC FIELDS; CONTACT; INCLUSION; INHOMOGENEITIES; STABILITY;
D O I
10.1016/j.ijengsci.2024.104137
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The incorporation of ceramics into polymers, forming solid composite electrolytes (SCEs) leads to enhanced electrical performance of all-solid-state lithium metal batteries. This is because the dispersed ceramics particles increase the ionic conductivity, while the polymer matrix leads to better contact performance between the electrolyte and the electrode. In this study, we present a model, based on Hybrid Elements Methods, for the time-dependent Li metal and SCE rough interface mechanics, taking into account for the oxide (ceramics) inclusions (using the Equivalent Inclusion method), and the viscoelasticity of the matrix. We study the effect of LLTO particle size, weight concentration, and spatial distribution on the interface mechanical and electrical response. Moreover, considering the viscoelastic spectrum of a real PEO matrix, under a given stack pressure, we investigate the evolution over time of the mechanical and electrical performance of the interface. The presented theoretical/numerical model might be pivotal in tailoring the development of advanced solid state batteries with superior performance; indeed, we found that conditions in the SCE mixture which optimize both the contact resistivity and the interface stability in time.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Realizing high performance of solid-state lithium metal batteries by flexible ceramic/polymer hybrid solid electrolyte
    Cheng-Lin Yan
    Rare Metals, 2020, 39 (05) : 458 - 459
  • [22] Gradual gradient distribution composite solid electrolyte for solid-state lithium metal batteries with ameliorated electrochemical performance
    Zhang, Xiaobao
    Zhao, Huan
    Wang, Ning
    Xiao, Yiyang
    Liang, Shiang
    Yang, Juanyu
    Huang, Xiaowei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 658 : 836 - 845
  • [23] Design of networked solid-state polymer as artificial interlayer and solid polymer electrolyte for lithium metal batteries
    Subramani, Ramesh
    Pham, Minh-Nhat
    Lin, Yu-Hsing
    Hsieh, Chien-Te
    Lee, Yuh-Lang
    Jan, Jeng-Shiung
    Chiu, Chi-Cheng
    Teng, Hsisheng
    CHEMICAL ENGINEERING JOURNAL, 2022, 431
  • [24] Electrolyte and anode-electrolyte interphase in solid-state lithium metal polymer batteries: A perspective
    Zhang, Heng
    Chen, Yuhui
    Li, Chunmei
    Armand, Michel
    SUSMAT, 2021, 1 (01): : 24 - 37
  • [25] Rational design of ultrathin composite solid-state electrolyte for high-performance lithium metal batteries
    Wang, Bingyao
    Wang, Guoxu
    He, Pingge
    Fan, Li-Zhen
    JOURNAL OF MEMBRANE SCIENCE, 2022, 642
  • [26] Single Lithium-Ion Conducting Solid Polymer Electrolyte with Superior Electrochemical Stability and Interfacial Compatibility for Solid-State Lithium Metal Batteries
    Yuan, Hongyan
    Luan, Jingyi
    Yang, Zelin
    Zhang, Jian
    Wu, Yufeng
    Lu, Zhouguang
    Liu, Hongtao
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (06) : 7249 - 7256
  • [27] Structural Design of Composite Polymer Electrolytes for Solid-state Lithium Metal Batteries
    Liao, Wenchao
    Liu, Chen
    CHEMNANOMAT, 2021, 7 (11) : 1177 - 1187
  • [28] Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte
    Su Wang
    Qifang Sun
    Wenxiu Peng
    Yue Ma
    Ying Zhou
    Dawei Song
    Hongzhou Zhang
    Xixi Shi
    Chunliang Li
    Lianqi Zhang
    Journal of Energy Chemistry, 2021, 58 (07) : 85 - 93
  • [29] Ameliorating the interfacial issues of all-solid-state lithium metal batteries by constructing polymer/inorganic composite electrolyte
    Wang, Su
    Sun, Qifang
    Peng, Wenxiu
    Ma, Yue
    Zhou, Ying
    Song, Dawei
    Zhang, Hongzhou
    Shi, Xixi
    Li, Chunliang
    Zhang, Lianqi
    JOURNAL OF ENERGY CHEMISTRY, 2021, 58 : 85 - 93
  • [30] Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries with 4 V Cathodes
    Li, Zeyuan
    Zhang, Hanrui
    Sun, Xueliang
    Yang, Yuan
    ACS ENERGY LETTERS, 2020, 5 (10) : 3244 - 3253