MetaFed: Federated Learning Among Federations With Cyclic Knowledge Distillation for Personalized Healthcare

被引:0
|
作者
Chen, Yiqiang [1 ]
Lu, Wang [1 ]
Qin, Xin [1 ]
Wang, Jindong [2 ]
Xie, Xing [2 ]
机构
[1] Chinese Acad Sci, Inst Comp Technol, Beijing 100190, Peoples R China
[2] Microsoft Res Asia, Beijing 100080, Peoples R China
关键词
Servers; Data models; Training; Adaptation models; Data privacy; Machine learning; Costs; Federated learning (FL); healthcare; knowledge distillation (KD); personalization; transfer learning;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Federated learning (FL) has attracted increasing attention to building models without accessing raw user data, especially in healthcare. In real applications, different federations can seldom work together due to possible reasons such as data heterogeneity and distrust/inexistence of the central server. In this article, we propose a novel framework called MetaFed to facilitate trustworthy FL between different federations. MetaFed obtains a personalized model for each federation without a central server via the proposed cyclic knowledge distillation. Specifically, MetaFed treats each federation as a meta distribution and aggregates knowledge of each federation in a cyclic manner. The training is split into two parts: common knowledge accumulation and personalization. Comprehensive experiments on seven benchmarks demonstrate that MetaFed without a server achieves better accuracy compared with state-of-the-art methods [e.g., 10%+ accuracy improvement compared with the baseline for physical activity monitoring dataset (PAMAP2)] with fewer communication costs. More importantly, MetaFed shows remarkable performance in real-healthcare-related applications.
引用
收藏
页码:16671 / 16682
页数:12
相关论文
共 50 条
  • [41] Communication-efficient federated learning via knowledge distillation
    Wu, Chuhan
    Wu, Fangzhao
    Lyu, Lingjuan
    Huang, Yongfeng
    Xie, Xing
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [42] Preservation of the Global Knowledge by Not-True Distillation in Federated Learning
    Lee, Gihun
    Jeong, Minchan
    Shin, Yongjin
    Bae, Sangmin
    Yun, Se-Young
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [43] Resource Allocation for Federated Knowledge Distillation Learning in Internet of Drones
    Yao, Jingjing
    Cal, Semih
    Sun, Xiang
    IEEE INTERNET OF THINGS JOURNAL, 2025, 12 (07): : 8064 - 8074
  • [44] Data-Free Knowledge Distillation for Heterogeneous Federated Learning
    Zhu, Zhuangdi
    Hong, Junyuan
    Zhou, Jiayu
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [45] Knowledge-Aware Parameter Coaching for Personalized Federated Learning
    Zhi, Mingjian
    Bi, Yuanguo
    Xu, Wenchao
    Wang, Haozhao
    Xiang, Tianao
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 17069 - 17077
  • [46] Privacy-Preserving Heterogeneous Personalized Federated Learning With Knowledge
    Pan, Yanghe
    Su, Zhou
    Ni, Jianbing
    Wang, Yuntao
    Zhou, Jinhao
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5969 - 5982
  • [47] Robust Multi-model Personalized Federated Learning via Model Distillation
    Muhammad, Adil
    Lin, Kai
    Gao, Jian
    Chen, Bincai
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2021, PT III, 2022, 13157 : 432 - 446
  • [48] A federated learning framework based on transfer learning and knowledge distillation for targeted advertising
    Su, Caiyu
    Wei, Jinri
    Lei, Yuan
    Li, Jiahui
    PEERJ COMPUTER SCIENCE, 2023, 9
  • [49] Heterogeneous Collaborative Learning for Personalized Healthcare Analytics via Messenger Distillation
    Ye, Guanhua
    Chen, Tong
    Li, Yawen
    Cui, Lizhen
    Quoc Viet Hung Nguyen
    Yin, Hongzhi
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (11) : 5249 - 5259
  • [50] A Network Resource Aware Federated Learning Approach using Knowledge Distillation
    Mishra, Rahul
    Gupta, Hari Prabhat
    Dutta, Tanima
    IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (IEEE INFOCOM WKSHPS 2021), 2021,