On the asymptotics of real solutions for the Painlevé I equation

被引:0
|
作者
Long, Wen-Gao [1 ]
Xia, Jun [2 ]
机构
[1] Hunan Univ Sci & Technol, Sch Math & Stat, Xiangtan 411201, Peoples R China
[2] Guangdong Polytech Normal Univ, Sch Math & Syst Sci, Guangzhou 510665, Peoples R China
基金
中国国家自然科学基金;
关键词
The Painlev & eacute; I equation; real solutions; asymptotic expansions; Riemann-Hilbert approach; LINEAR STOKES PHENOMENON; TAU-FUNCTION THEORY; ORTHOGONAL POLYNOMIALS; SINGULAR ASYMPTOTICS; CONNECTION PROBLEM; RANDOM MATRICES; UNIVERSALITY; TRANSCENDENT; RESPECT; POLES;
D O I
10.1142/S0219530524500441
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we revisit the asymptotic formulas of real Painlev & eacute; I transcendents as the independent variable tends to negative infinity, which were initially derived by Kapaev with the complex WKB method. Using the Riemann-Hilbert method, we improve the error estimates of the oscillatory type asymptotics and provide precise error estimates of the singular type asymptotics. We also establish the corresponding asymptotics for the associated Hamiltonians of real Painlev & eacute; I transcendents. In addition, two typos in the mentioned asymptotic formulas in literature are corrected.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Soliton asymptotics of nondecaying solutions of the modified Kadomtsev-Petviashvili-I equation
    Anders, I
    Boutet de Monvel, A
    JOURNAL OF MATHEMATICAL PHYSICS, 2001, 42 (08) : 3673 - 3690
  • [42] ASYMPTOTICS OF BLOWUP SOLUTIONS FOR THE AGGREGATION EQUATION
    Huang, Yanghong
    Bertozzi, Andrea
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (04): : 1309 - 1331
  • [43] Asymptotics of solutions to the generalized Ostrovsky equation
    Hayashi, Nakao
    Naumkin, Pavel I.
    Niizato, Tomoyuki
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (08) : 2505 - 2520
  • [44] Asymptotics of the Solutions of the Random Schrodinger Equation
    Bal, Guillaume
    Komorowski, Tomasz
    Ryzhik, Lenya
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 200 (02) : 613 - 664
  • [45] Circular Pentagons and Real Solutions of Painlevé VI Equations
    Alexandre Eremenko
    Andrei Gabrielov
    Communications in Mathematical Physics, 2017, 355 : 51 - 95
  • [46] Asymptotics of solutions of a perturbed heat equation
    Langer, Mikael
    Kozlov, Vladimir
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 481 - 493
  • [47] Circular Pentagons and Real Solutions of Painlev, VI Equations
    Eremenko, Alexandre
    Gabrielov, Andrei
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (01) : 51 - 95
  • [48] A Miura of the Painlevé I Equation and Its Discrete Analogs
    B. Grammaticos
    Y. Otha
    A. Ramani
    J. Satsuma
    K. M. Tamizhmani
    Letters in Mathematical Physics, 1997, 39 : 179 - 186
  • [49] Painlev, analysis and some solutions of variable coefficient Benny equation
    Kumar, Rajeev
    Gupta, R. K.
    Bhatia, S. S.
    PRAMANA-JOURNAL OF PHYSICS, 2015, 85 (06): : 1111 - 1122