Source-Free Progressive Domain Adaptation Network for Universal Cross-Domain Fault Diagnosis of Industrial Equipment

被引:0
|
作者
Li, Jipu [1 ]
Yue, Ke [2 ]
Wu, Zhaoqian [1 ]
Jiang, Fei [1 ]
Zhong, Zhi [1 ]
Li, Weihua [3 ]
Zhang, Shaohui [1 ]
机构
[1] Dongguan Univ Technol, Sch Mech Engn, Dongguan 523808, Peoples R China
[2] South China Univ Technol, Shien Ming Wu Sch Intelligent Engn, Guangzhou 510641, Guangdong, Peoples R China
[3] South China Univ Technol, Sch Mech & Automot Engn, Guangzhou 510641, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptation models; Training; Fault diagnosis; Feature extraction; Data models; Machinery; Production; Electromechanical systems; Accuracy; Fault detection; Distribution searching; fault diagnosis; progressive domain adaptation (DA); rotating machinery; source-free;
D O I
10.1109/JSEN.2025.3529034
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Recently, transfer learning (TL)-based intelligent fault diagnosis (IFD) methods have been extensively adopted in the realm of industrial equipment. A fundamental assumption that the source and target domains have matching fault types is effectively resolved. Unfortunately, existing methods fail to account for two limitations in real-world applications: 1) the existing methods are limited to specific domain adaptation (DA) scenarios, which makes it difficult to achieve satisfactory results and 2) the existing methods do not consider data privacy protection because they require both source and target samples during the training stage. To address these challenges, a novel source-free progressive DA network (SPDAN) is proposed to simultaneously handle multiple DA scenarios without accessing source samples. First, a neighbor searching-based trustworthy pairs construction is utilized to provide the high-confident nearest fault samples. Second, an instance alignment-based domain shift reduction is used to eliminate the data distribution discrepancy of different domains. Finally, an information entropy-based novel fault detection is employed to identify unknown fault samples. Experiments on two bearing datasets validate the proposed SPDAN. The experiments confirm that the proposed SPDAN can successfully operate in multiple DA scenarios without relying on source samples, making it a highly promising approach for diagnosing faults in industrial equipment.
引用
收藏
页码:8067 / 8078
页数:12
相关论文
共 50 条
  • [31] Crots: Cross-Domain Teacher–Student Learning for Source-Free Domain Adaptive Semantic Segmentation
    Xin Luo
    Wei Chen
    Zhengfa Liang
    Longqi Yang
    Siwei Wang
    Chen Li
    International Journal of Computer Vision, 2024, 132 : 20 - 39
  • [32] Multisource domain factorization network for cross-domain fault diagnosis of rotating machinery: An unsupervised multisource domain adaptation method
    Shi, Yaowei
    Deng, Aidong
    Ding, Xue
    Zhang, Shun
    Xu, Shuo
    Li, Jing
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2022, 164
  • [33] Source bias reduction for source-free domain adaptation
    Tian, Liang
    Ye, Mao
    Zhou, Lihua
    Wang, Zhenbin
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (SUPPL 1) : 883 - 893
  • [34] A cross-domain intelligent fault diagnosis method based on multi-source domain feature adaptation and selection
    Jia, Ning
    Huang, Weiguo
    Cheng, Yao
    Ding, Chuancang
    Wang, Jun
    Shen, Changqing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)
  • [35] Source-free unsupervised domain adaptation: A survey
    Fang, Yuqi
    Yap, Pew-Thian
    Lin, Weili
    Zhu, Hongtu
    Liu, Mingxia
    NEURAL NETWORKS, 2024, 174
  • [36] Continual Source-Free Unsupervised Domain Adaptation
    Ahmed, Waqar
    Morerio, Pietro
    Murino, Vittorio
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 14 - 25
  • [37] Source-free domain adaptation with unrestricted source hypothesis
    He, Jiujun
    Wu, Liang
    Tao, Chaofan
    Lv, Fengmao
    Pattern Recognition, 2024, 149
  • [38] CROSS-INFERENTIAL NETWORKS FOR SOURCE-FREE UNSUPERVISED DOMAIN ADAPTATION
    Tang, Yushun
    Guo, Qinghai
    He, Zhihai
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 96 - 100
  • [39] SSDA: Secure Source-Free Domain Adaptation
    Ahmed, Sabbir
    Al Arafat, Abdullah
    Rizve, Mamshad Nayeem
    Hossain, Rahim
    Guo, Zhishan
    Rakin, Adnan Siraj
    Proceedings of the IEEE International Conference on Computer Vision, 2023, : 19123 - 19133
  • [40] Source-free domain adaptation with unrestricted source hypothesis
    He, Jiujun
    Wu, Liang
    Tao, Chaofan
    Lv, Fengmao
    PATTERN RECOGNITION, 2024, 149