GLOBAL VS LOCAL RANDOM FOREST MODEL FOR WATER QUALITY MONITORING: ASSESSMENT IN FINGER LAKES USING SENTINEL-2 IMAGERY AND GLORIA DATASET

被引:0
|
作者
Khan, Rabia Munsaf [1 ]
Salehi, Bahram [1 ]
Niroumand-Jadidi, Milad [2 ]
Mandianpari, Masoud [3 ,4 ]
机构
[1] SUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA
[2] Fdn Bruno Kessler, Digital Soc Ctr, Via Sommarive 18, I-38123 Trento, Italy
[3] C CORE, St John, NL A1B 3X5, Canada
[4] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NL A1B 3X5, Canada
来源
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024 | 2024年
关键词
GLORIA; Machine Learning; Secchi Disk Depth (Zsd); Sentinel-2; Water Clarity;
D O I
10.1109/IGARSS53475.2024.10641536
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Machine learning (ML) methods such as Random Forest (RF) have shown promises to estimate Secchi Disk Depth (Zsd). However, lack of a comprehensive dataset has been a long-lasting issue for training ML models in remote sensing of water quality. To aid the training process, the GLORIA dataset has recently provided access to hyperspectral in-situ measurements of remote sensing reflectance (Rrs) along with associated water quality parameters for globally representative inland and coastal waters. We use simulated Sentinel-2 Rrs to train a global model using GLORIA and then validate it on independent data from Finger Lakes, USA. When compared to RF model trained on Finger Lakes data, the validation results indicate better performance (Mean Absolute Error (MAE) 37%) as compared to the global model trained on GLORIA ( MAE 94%). However, when the global model was validated on independent dataset from GLORIA (i.e. Lake Erie), the results were promising (MAE 34%). Therefore, the models can be used to estimate Zsd globally, provided the uncertainties in deriving satellite based Rrs are accounted for.
引用
收藏
页码:4389 / 4392
页数:4
相关论文
共 50 条
  • [21] Mapping the trophic state index of eastern lakes in China using an empirical model and Sentinel-2 imagery data
    Li, Sijia
    Chen, Fangfang
    Song, Kaishan
    Liu, Ge
    Tao, Hui
    Xu, Shiqi
    Wang, Xiang
    Wang, Qiang
    Mu, Guangyi
    JOURNAL OF HYDROLOGY, 2022, 608
  • [22] Monitoring and spatial traceability of river water quality using Sentinel-2 satellite images
    Zhang, Yingyin
    He, Xianqiang
    Lian, Gang
    Bai, Yan
    Yang, Ying
    Gong, Fang
    Wang, Difeng
    Zhang, Zili
    Li, Teng
    Jin, Xuchen
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 894
  • [23] Object-based water body extraction model using Sentinel-2 satellite imagery
    Kaplan, Gordana
    Avdan, Ugur
    EUROPEAN JOURNAL OF REMOTE SENSING, 2017, 50 (01) : 137 - 143
  • [24] Random Forest Classification using Sentinel-1 and Sentinel-2 series for vegetation monitoring in the Pays de Brest (France)
    Niculescu, Simona
    Billey, Antoine
    Talab-Ouali, Halima
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XX, 2018, 10783
  • [25] Analysis and prediction of rubber tree phenological changes during Pestalotiopsis infection using Sentinel-2 imagery and random forest
    Herdiyeni, Yeni
    Mumtaz, Muhammad Faishal
    Laxmi, Gibtha Fitri
    Setiawan, Yudi
    Prasetyo, Lilik Budi
    Febbiyanti, Tri Rapani
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (01)
  • [26] Microphytobenthos spatio-temporal dynamics across an intertidal gradient using Random Forest classification and Sentinel-2 imagery
    Haro, S.
    Jesus, B.
    Oiry, S.
    Papaspyrou, S.
    Lara, M.
    Gonzalez, C. J.
    Corzo, A.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 804
  • [27] Deriving Water Quality Parameters Using Sentinel-2 Imagery: A Case Study in the Sado Estuary, Portugal
    Sent, Giulia
    Biguino, Beatriz
    Favareto, Luciane
    Cruz, Joana
    Sa, Carolina
    Dogliotti, Ana Ines
    Palma, Carla
    Brotas, Vanda
    Brito, Ana C.
    REMOTE SENSING, 2021, 13 (05) : 1 - 30
  • [28] Using sentinel-2 satellite imagery to develop microphytobenthos-based water quality indices in estuaries
    Oiry, Simon
    Barille, Laurent
    ECOLOGICAL INDICATORS, 2021, 121
  • [29] Validation and Comparison of Water Quality Products in Baltic Lakes Using Sentinel-2 MSI and Sentinel-3 OLCI Data
    Soomets, Tuuli
    Uudeberg, Kristi
    Jakovels, Dainis
    Brauns, Agris
    Zagars, Matiss
    Kutser, Tiit
    SENSORS, 2020, 20 (03)
  • [30] Dynamic monitoring and analysis of chlorophyll-a concentrations in global lakes using Sentinel-2 images in Google Earth Engine
    Zhao, Desong
    Huang, Jue
    Li, Zhengmao
    Yu, Guangyue
    Shen, Huagang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912