GLOBAL VS LOCAL RANDOM FOREST MODEL FOR WATER QUALITY MONITORING: ASSESSMENT IN FINGER LAKES USING SENTINEL-2 IMAGERY AND GLORIA DATASET
被引:0
|
作者:
Khan, Rabia Munsaf
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USASUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA
Khan, Rabia Munsaf
[1
]
Salehi, Bahram
论文数: 0引用数: 0
h-index: 0
机构:
SUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USASUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA
Salehi, Bahram
[1
]
Niroumand-Jadidi, Milad
论文数: 0引用数: 0
h-index: 0
机构:
Fdn Bruno Kessler, Digital Soc Ctr, Via Sommarive 18, I-38123 Trento, ItalySUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA
Niroumand-Jadidi, Milad
[2
]
Mandianpari, Masoud
论文数: 0引用数: 0
h-index: 0
机构:
C CORE, St John, NL A1B 3X5, Canada
Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NL A1B 3X5, CanadaSUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA
Mandianpari, Masoud
[3
,4
]
机构:
[1] SUNY Coll Environm Sci & Forestry, Dept Environm Resources Engn, Syracuse, NY 13210 USA
[2] Fdn Bruno Kessler, Digital Soc Ctr, Via Sommarive 18, I-38123 Trento, Italy
[3] C CORE, St John, NL A1B 3X5, Canada
[4] Mem Univ Newfoundland, Dept Elect & Comp Engn, St John, NL A1B 3X5, Canada
来源:
IGARSS 2024-2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, IGARSS 2024
|
2024年
关键词:
GLORIA;
Machine Learning;
Secchi Disk Depth (Zsd);
Sentinel-2;
Water Clarity;
D O I:
10.1109/IGARSS53475.2024.10641536
中图分类号:
P9 [自然地理学];
学科分类号:
0705 ;
070501 ;
摘要:
Machine learning (ML) methods such as Random Forest (RF) have shown promises to estimate Secchi Disk Depth (Zsd). However, lack of a comprehensive dataset has been a long-lasting issue for training ML models in remote sensing of water quality. To aid the training process, the GLORIA dataset has recently provided access to hyperspectral in-situ measurements of remote sensing reflectance (Rrs) along with associated water quality parameters for globally representative inland and coastal waters. We use simulated Sentinel-2 Rrs to train a global model using GLORIA and then validate it on independent data from Finger Lakes, USA. When compared to RF model trained on Finger Lakes data, the validation results indicate better performance (Mean Absolute Error (MAE) 37%) as compared to the global model trained on GLORIA ( MAE 94%). However, when the global model was validated on independent dataset from GLORIA (i.e. Lake Erie), the results were promising (MAE 34%). Therefore, the models can be used to estimate Zsd globally, provided the uncertainties in deriving satellite based Rrs are accounted for.
机构:
IPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, IndonesiaIPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, Indonesia
Herdiyeni, Yeni
Mumtaz, Muhammad Faishal
论文数: 0引用数: 0
h-index: 0
机构:
IPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, IndonesiaIPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, Indonesia
Mumtaz, Muhammad Faishal
Laxmi, Gibtha Fitri
论文数: 0引用数: 0
h-index: 0
机构:
IPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, IndonesiaIPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, Indonesia
Laxmi, Gibtha Fitri
Setiawan, Yudi
论文数: 0引用数: 0
h-index: 0
机构:
IPB Univ, Fac Forestry & Environm, Dept Forest Resources Conservat & Ecotourism, Bogor, IndonesiaIPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, Indonesia
Setiawan, Yudi
Prasetyo, Lilik Budi
论文数: 0引用数: 0
h-index: 0
机构:
IPB Univ, Fac Forestry & Environm, Dept Forest Resources Conservat & Ecotourism, Bogor, IndonesiaIPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, Indonesia
Prasetyo, Lilik Budi
Febbiyanti, Tri Rapani
论文数: 0引用数: 0
h-index: 0
机构:
Indonesian Rubber Res Inst Sembawa, Banyuasin, IndonesiaIPB Univ, Fac Math & Nat Sci, Dept Comp Sci, Bogor, Indonesia
机构:
Univ Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, PortugalUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Sent, Giulia
Biguino, Beatriz
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Inst Hidrog, Rua Trinas 49, P-1249093 Lisbon, PortugalUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Biguino, Beatriz
Favareto, Luciane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, PortugalUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Favareto, Luciane
Cruz, Joana
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, PortugalUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Cruz, Joana
Sa, Carolina
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Portugal Space, Estr Laranjeiras, P-1500423 Lisbon, PortugalUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Sa, Carolina
Dogliotti, Ana Ines
论文数: 0引用数: 0
h-index: 0
机构:
Univ Buenos Aires, Inst Astron & Fis Espacio IAFE, CONICET, Pabellon IAFE,Ciudad Univ,C1428EGA, Buenos Aires, DF, ArgentinaUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Dogliotti, Ana Ines
Palma, Carla
论文数: 0引用数: 0
h-index: 0
机构:
Inst Hidrog, Rua Trinas 49, P-1249093 Lisbon, PortugalUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Palma, Carla
Brotas, Vanda
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Univ Lisbon, Dept Biol Vegetal, Fac Ciencias, P-1749016 Lisbon, PortugalUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Brotas, Vanda
Brito, Ana C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
Univ Lisbon, Dept Biol Vegetal, Fac Ciencias, P-1749016 Lisbon, PortugalUniv Lisbon, MARE Marine & Environm Sci Ctr, Fac Ciencias, P-1749016 Lisbon, Portugal
机构:
Univ Nantes, Fac Sci & Tech, Lab Mer Mol Sante EA 2160, BP 92208, F-44322 Nantes 3, FranceUniv Nantes, Fac Sci & Tech, Lab Mer Mol Sante EA 2160, BP 92208, F-44322 Nantes 3, France