Streamflow prediction using artificial neural networks and soil moisture proxies

被引:0
|
作者
Rouse, Robert Edwin [1 ]
Khamis, Doran [2 ]
Hosking, Scott [3 ,4 ]
Mcrobie, Allan
Shuckburgh, Emily [5 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] UK Ctr Ecol & Hydrol, Wallingford OX10 8BB, England
[3] British Antarctic Survey, Cambridge CB3 0ET, England
[4] Alan Turing Inst, London NW1 2DB, England
[5] Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB3 0FD, England
来源
基金
英国工程与自然科学研究理事会;
关键词
artificial neural networks; hydrology; machine learning; streamflow; SYSTEME HYDROLOGIQUE EUROPEEN; INSTANTANEOUS PEAK FLOW; SHE; UNCERTAINTY;
D O I
10.1017/eds.2024.48.pr4; 10.1017/eds.2024.48.pr12; 10.1017/eds.2024.48.pr13; 10.1017/eds.2024.48.pr14; 10.1017/eds.2024.48; 10.1017/eds.2024.48.pr1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Machine learning models have been used extensively in hydrology, but issues persist with regard to their transparency, and there is currently no identifiable best practice for forcing variables in streamflow or flood modeling. In this paper, using data from the Centre for Ecology & Hydrology's National River Flow Archive and from the European Centre for Medium-Range Weather Forecasts, we present a study that focuses on the input variable set for a neural network streamflow model to demonstrate how certain variables can be internalized, leading to a compressed feature set. By highlighting this capability to learn effectively using proxy variables, we demonstrate a more transferable framework that minimizes sensing requirements and that enables a route toward generalizing models.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] An artificial neural network model for soil moisture prediction responding to weather parameters
    Yang Shaohui
    Wang Yiming
    ACTUAL TASKS ON AGRICULTURAL ENGINEERING, PROCEEDINGS, 2006, 34 : 213 - 218
  • [32] Soil Moisture and Forest Biomass retrieval on a global scale by using CyGNSS data and Artificial Neural Networks
    Santi, E.
    Pettinato, S.
    Paloscia, S.
    Clarizia, M. P.
    Dente, L.
    Guerriero, L.
    Comite, D.
    Pierdicca, N.
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 5905 - 5908
  • [33] Modeling of maximum dry density and optimum moisture content of stabilized soil using artificial neural networks
    Alavi, Amir Hossein
    Gandomi, Amir Hossein
    Mollahassani, Ali
    Heshmati, Ali Akbar
    Rashed, Azadeh
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2010, 173 (03) : 368 - 379
  • [34] High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using Artificial Neural Networks
    Eroglu, Orhan
    Kurum, Mehmet
    Boyd, Dylan
    Gurbuz, Ali Cafer
    REMOTE SENSING, 2019, 11 (19)
  • [35] Soil Moisture Retrieval Using Neural Networks: Application to SMOS
    Rodriguez-Fernandez, Nemesio J.
    Aires, Filipe
    Richaume, Philippe
    Kerr, Yann H.
    Prigent, Catherine
    Kolassa, Jana
    Cabot, Francois
    Jimenez, Carlos
    Mahmoodi, Ali
    Drusch, Matthias
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (11): : 5991 - 6007
  • [36] Disaggrregation of remotely sensed soil moisture using neural networks
    Schamschula, MP
    Crosson, WL
    Laymon, C
    Inguva, R
    Steward, A
    MULTIMEDIA, IMAGE PROCESSING AND SOFT COMPUTING: TRENDS, PRINCIPLES AND APPLICATIONS, 2002, 13 : 89 - 94
  • [37] Estimation of Soil Moisture Profile Using Wavelet Neural Networks
    Kulaglic, Ajla
    Ustundag, Burak Berk
    THIRD INTERNATIONAL CONFERENCE ON AGRO-GEOINFORMATICS (AGRO-GEOINFORMATICS 2014), 2014, : 330 - 335
  • [38] Prediction of artificial soil's unconfined compression strength test using statistical analyses and artificial neural networks
    Gunaydin, Osman
    Gokoglu, Ali
    Fener, Mustafa
    ADVANCES IN ENGINEERING SOFTWARE, 2010, 41 (09) : 1115 - 1123
  • [39] Digital soil mapping using artificial neural networks
    Behrens, T
    Förster, H
    Scholten, T
    Steinrücken, U
    Spies, ED
    Goldschmitt, M
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2005, 168 (01) : 21 - 33
  • [40] The viability of extended marine predators algorithm-based artificial neural networks for streamflow prediction
    Ikram, Rana Muhammad Adnan
    Ewees, Ahmed A.
    Parmar, Kulwinder Singh
    Yaseen, Zaher Mundher
    Shahid, Shamsuddin
    Kisi, Ozgur
    APPLIED SOFT COMPUTING, 2022, 131