Streamflow prediction using artificial neural networks and soil moisture proxies

被引:0
|
作者
Rouse, Robert Edwin [1 ]
Khamis, Doran [2 ]
Hosking, Scott [3 ,4 ]
Mcrobie, Allan
Shuckburgh, Emily [5 ]
机构
[1] Univ Cambridge, Dept Engn, Cambridge CB2 1PZ, England
[2] UK Ctr Ecol & Hydrol, Wallingford OX10 8BB, England
[3] British Antarctic Survey, Cambridge CB3 0ET, England
[4] Alan Turing Inst, London NW1 2DB, England
[5] Univ Cambridge, Dept Comp Sci & Technol, Cambridge CB3 0FD, England
来源
基金
英国工程与自然科学研究理事会;
关键词
artificial neural networks; hydrology; machine learning; streamflow; SYSTEME HYDROLOGIQUE EUROPEEN; INSTANTANEOUS PEAK FLOW; SHE; UNCERTAINTY;
D O I
10.1017/eds.2024.48.pr4; 10.1017/eds.2024.48.pr12; 10.1017/eds.2024.48.pr13; 10.1017/eds.2024.48.pr14; 10.1017/eds.2024.48; 10.1017/eds.2024.48.pr1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Machine learning models have been used extensively in hydrology, but issues persist with regard to their transparency, and there is currently no identifiable best practice for forcing variables in streamflow or flood modeling. In this paper, using data from the Centre for Ecology & Hydrology's National River Flow Archive and from the European Centre for Medium-Range Weather Forecasts, we present a study that focuses on the input variable set for a neural network streamflow model to demonstrate how certain variables can be internalized, leading to a compressed feature set. By highlighting this capability to learn effectively using proxy variables, we demonstrate a more transferable framework that minimizes sensing requirements and that enables a route toward generalizing models.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Artificial neural networks for streamflow prediction
    Dolling, OR
    Varas, EA
    JOURNAL OF HYDRAULIC RESEARCH, 2002, 40 (05) : 547 - 554
  • [2] Advances in ungauged streamflow prediction using artificial neural networks
    Besaw, Lance E.
    Rizzo, Donna M.
    Bierman, Paul R.
    Hackett, William R.
    JOURNAL OF HYDROLOGY, 2010, 386 (1-4) : 27 - 37
  • [3] Soil salinity prediction using artificial neural networks
    Patel, RM
    Prasher, SO
    Goel, PK
    Bassi, R
    JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION, 2002, 38 (01): : 91 - 100
  • [4] Added gains of soil moisture content observations for streamflow predictions using neural networks
    Anctil, Francois
    Lauzon, Nicolas
    Filion, Melanie
    JOURNAL OF HYDROLOGY, 2008, 359 (3-4) : 225 - 234
  • [5] Streamflow forecasting using artificial neural networks
    Hsu, KL
    Gupta, HV
    Sorooshian, S
    WATER RESOURCES ENGINEERING 98, VOLS 1 AND 2, 1998, : 967 - 973
  • [6] On the relevance of using artificial neural networks for estimating soil moisture content
    Elshorbagy, Amin
    Parasuraman, K.
    JOURNAL OF HYDROLOGY, 2008, 362 (1-2) : 1 - 18
  • [7] Prediction of Dried Durian Moisture Content Using Artificial Neural Networks
    Husna, Marati
    Purqon, Acep
    6TH ASIAN PHYSICS SYMPOSIUM, 2016, 739
  • [8] Prediction of soil temperature by using artificial neural networks algorithms
    George, RK
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 47 (03) : 1737 - 1748
  • [9] Soil prediction using artificial neural networks and topographic attributes
    Silveira, Claudinei Taborda
    Oka-Fiori, Chisato
    Cordeiro Santos, Leonardo Jose
    Sirtoli, Angelo Evaristo
    Silva, Claudionor Ribeiro
    Botelho, Mosar Faria
    GEODERMA, 2013, 195 : 165 - 172
  • [10] Prediction of Soil Deformation in Tunnelling Using Artificial Neural Networks
    Lai, Jinxing
    Qiu, Junling
    Feng, Zhihua
    Chen, Jianxun
    Fan, Haobo
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2016, 2016