Numerical radius inequalities via block matrices

被引:0
|
作者
Audeh, Wasim [1 ]
Al-Labadi, Manal [1 ]
Al-Naimi, Raja'a [1 ]
机构
[1] Univ Petra, Dept Math, Amman, Jordan
关键词
Inequality; Numerical radius; Operator; Norm;
D O I
10.1007/s44146-024-00164-4
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we prove new numerical radius bounds that generalize some well-known results in the literature. For example, we prove that if A, B, X, Y are bounded linear operators on a complex separable Hilbert space H such that A and B are positive, then w(AX + YB) <= root|| A + B || || X (& lowast;) AX + YBY & lowast; ||. This inequality generalizes a celebrated inequality proved by Kittaneh which states that: w(2)(A) <= 1/2|| A(& lowast;)A+AA(& lowast;) ||.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Numerical radius inequalities of 2 x 2 operator matrices
    Bhunia, Pintu
    Paul, Kallol
    ADVANCES IN OPERATOR THEORY, 2023, 8 (01)
  • [32] Hilbert-Schmidt numerical radius inequalities for operator matrices
    Aldalabih, Alaa
    Kittaneh, Fuad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2019, 581 : 72 - 84
  • [33] On A-numerical radius equalities and inequalities for certain operator matrices
    Kittaneh, Fuad
    Sahoo, Satyajit
    ANNALS OF FUNCTIONAL ANALYSIS, 2021, 12 (04)
  • [34] Numerical radius inequalities for n x n operator matrices
    Abu-Omar, Amer
    Kittaneh, Fuad
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 468 : 18 - 26
  • [35] Sharp Inequalities for the Numerical Radii of Block Operator Matrices
    Aghideh, M. Ghaderi
    Moslehian, M. S.
    Rooin, J.
    ANALYSIS MATHEMATICA, 2019, 45 (04) : 687 - 703
  • [36] Sharp Inequalities for the Numerical Radii of Block Operator Matrices
    M. Ghaderi Aghideh
    M. S. Moslehian
    J. Rooin
    Analysis Mathematica, 2019, 45 : 687 - 703
  • [37] Improved Inequalities for Numerical Radius via Cartesian Decomposition
    Bhunia, P.
    Jana, S.
    Moslehian, M. S.
    Paul, K.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2023, 57 (01) : 18 - 28
  • [38] Improved Inequalities for Numerical Radius via Cartesian Decomposition
    P. Bhunia
    S. Jana
    M. S. Moslehian
    K. Paul
    Functional Analysis and Its Applications, 2023, 57 : 18 - 28
  • [39] New numerical radius inequalities for operator matrices and a bound for the zeros of polynomials
    Frakis, Abdelkader
    Kittaneh, Fuad
    Soltani, Soumia
    ADVANCES IN OPERATOR THEORY, 2023, 8 (01)
  • [40] Numerical radius inequalities for operator matrices and applications to the polynomial eigenvalue problem
    Watheq Bani-Domi
    Fuad Kittaneh
    Advances in Operator Theory, 2023, 8