Maximal dimensional subalgebras of general Cartan-type Lie algebras

被引:0
|
作者
Bell, Jason [1 ]
Buzaglo, Lucas [2 ]
机构
[1] Univ Waterloo, Dept Pure Math, Waterloo, ON, Canada
[2] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1112/blms.13216
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let k$\mathbb {k}$ be a field of characteristic zero and let Wn=Der(k[x1,& mldr;,xn])$\mathbb {W}_n = \operatorname{Der}(\mathbb {k}[x_1,\ldots,x_n])$ be the nth$n{\text{th}}$ general Cartan-type Lie algebra. In this paper, we study Lie subalgebras L$L$ of Wn$\mathbb {W}_n$ of maximal Gelfand-Kirillov (GK) dimension, that is, with GKdim(L)=n$\operatorname{GKdim}(L) = n$.For n=1$n = 1$, we completely classify such L$L$, proving a conjecture of the second author. As a corollary, we obtain a new proof that W1$\mathbb {W}_1$ satisfies the Dixmier conjecture, in other words, End(W1)\{0}=Aut(W1)$\operatorname{End}(\mathbb {W}_1) \setminus \lbrace 0\rbrace = \operatorname{Aut}(\mathbb {W}_1)$, a result first shown by Du.For arbitrary n$n$, we show that if L$L$ is a GK-dimension n$n$ subalgebra of Wn$\mathbb {W}_n$, then U(L)$U(L)$ is not (left or right) noetherian.
引用
收藏
页码:605 / 624
页数:20
相关论文
共 50 条
  • [41] The derivation algebra of the cartan-type Lie superalgebra HO
    Liu, WD
    Zhang, YZ
    Wang, XL
    JOURNAL OF ALGEBRA, 2004, 273 (01) : 176 - 205
  • [42] Automorphisms of Infinite Dimensional Lie Algebras of Cartan Type
    Jin Ning (Department of Mathematics
    Acta Mathematica Sinica,English Series, 1997, (02) : 155 - 160
  • [43] Automorphisms of infinite dimensional Lie algebras of Cartan type
    Jin Ning
    Acta Mathematica Sinica, 1997, 13 (2) : 155 - 160
  • [44] Commutators and Cartan Subalgebras in Lie Algebras of Compact Semisimple Lie Groups
    Malkoun, J.
    Nahlus, N.
    JOURNAL OF LIE THEORY, 2017, 27 (04) : 1027 - 1032
  • [45] Biderivations and linear commuting maps on the restricted Cartan-type Lie algebras H(n; 1)
    Chang, Yuan
    Chen, Liangyun
    Zhou, Xin
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (03) : 1311 - 1326
  • [46] Superderivations for Modular Graded Lie Superalgebras of Cartan-type
    Bai, Wei
    Liu, Wende
    ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (01) : 69 - 86
  • [47] Automorphism groups of restricted Cartan-type Lie superalgebras
    Liu, Wende
    Zhang, Yongzheng
    COMMUNICATIONS IN ALGEBRA, 2006, 34 (10) : 3767 - 3784
  • [48] THIN SUBALGEBRAS OF LIE ALGEBRAS OF MAXIMAL CLASS
    Avitabile, M.
    Caranti, A.
    Gavioli, N.
    Monti, V
    Newman, M. F.
    O'Brien, E. A.
    ISRAEL JOURNAL OF MATHEMATICS, 2023, 253 (01) : 101 - 112
  • [49] Leibniz algebras with absolute maximal Lie subalgebras
    Biyogmam, G. R.
    Tcheka, C.
    ALGEBRA AND DISCRETE MATHEMATICS, 2020, 29 (01): : 52 - 65
  • [50] Maximal subalgebras and chief factors of Lie algebras
    Towers, David A.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2016, 220 (01) : 482 - 493