MDIGCNet: Multidirectional Information-Guided Contextual Network for Infrared Small Target Detection

被引:0
|
作者
Zhang, Luping [1 ,2 ]
Luo, Junhai [1 ,2 ]
Huang, Yian [1 ,2 ]
Wu, Fengyi [1 ,2 ]
Cui, Xingye [1 ,2 ]
Peng, Zhenming [1 ,2 ]
机构
[1] Sch Informat & Commun Engn, Chengdu 611731, Peoples R China
[2] Univ Elect Sci & Technol China, Lab Imaging Detect & Intelligent Percept, Chengdu 610054, Peoples R China
关键词
Feature extraction; Convolution; Kernel; Data mining; Object detection; Standards; Optimization; Convolutional neural networks; Computational modeling; Accuracy; Difference convolution; infrared small target detection (ISTD); multidirectional gradient information extraction; reparameterization; LOCAL CONTRAST METHOD; MODEL;
D O I
10.1109/JSTARS.2024.3508255
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Infrared small target detection (ISTD) technology has extensive applications in the military field. Due to the quality of imaging equipment and environmental interference, infrared small target images lack texture and structural information. Deep learning-based algorithms have achieved superior accuracy in this field compared to traditional algorithms; however, these methods are often not designed with domain knowledge integration. In this article, we propose a multidirectional information-guided contextual network (MDIGCNet) for ISTD. The primary structure of this network adopts the U-Net architecture. To address the issue of lacking texture and structural information in the target images, we employ an integrated differential convolution (IDConv) module to extract richer image features during both the encoding and decoding stages. Skip connections in the network utilize a multidirectional gradient information extraction block (MGIEB) to obtain gradient features of infrared small targets. Our domain-inspired multidirectional Gaussian differential convolution (MGDC) module is employed to extract features of Gaussian-distributed small targets, enhancing the distinction between targets and backgrounds. Additionally, we designed a local-global feature fusion (LGFF) module incorporating an attention mechanism to merge shallow and deep features, thereby improving the efficiency of feature utilization within the model. Furthermore, since both IDConv and MGDC are parallel multiconvolutional kernel structures, reparameterization techniques are used to avoid excessive parameters and computational load. Experimental results on public datasets NUDT-SIRST, IRSTD-1k, and SIRST-Aug demonstrate that our algorithm outperforms other state-of-the-art methods in detection performance.
引用
收藏
页码:2063 / 2076
页数:14
相关论文
共 50 条
  • [21] SCAFNet: Semantic-Guided Cascade Adaptive Fusion Network for Infrared Small Target Detection
    Zhang, Shizhou
    Wang, Zhang
    Xing, Yinghui
    Lin, Liangkui
    Su, Xiaoting
    Zhang, Yanning
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [22] Context-Guided Reverse Attention Network With Multiscale Aggregation for Infrared Small Target Detection
    Zhong, Shunshun
    Zhang, Fan
    Duan, Ji'an
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 10152 - 10161
  • [23] Infrared Small Target Detection Method Based on Multidirectional Derivative and Local Contrast Difference
    Xu, Yunkai
    Chen, Xueqi
    Wan, Minjie
    Chen, Yili
    Shao, Ajun
    Kong, Xiaofang
    Gu, Guohua
    OPTOELECTRONIC IMAGING AND MULTIMEDIA TECHNOLOGY IX, 2022, 12317
  • [24] Infrared Small Target Detection Based on Local Contrast-Weighted Multidirectional Derivative
    Xu, Yunkai
    Wan, Minjie
    Zhang, Xiaojie
    Wu, Jian
    Chen, Yili
    Chen, Qian
    Gu, Guohua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [25] Infrared Small Target Detection Based on Local Contrast-Weighted Multidirectional Derivative
    Xu, Yunkai
    Wan, Minjie
    Zhang, Xiaojie
    Wu, Jian
    Chen, Yili
    Chen, Qian
    Gu, Guohua
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [26] Infrared Small Target Detection Based on Adaptive Size Estimation by Multidirectional Gradient Filter
    Hao, Congyu
    Li, Zhengzhou
    Zhang, Yuting
    Chen, Wenhao
    Zou, Yong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [27] RISTDnet: Robust Infrared Small Target Detection Network
    Hou, Qingyu
    Wang, Zhipeng
    Tan, Fanjiao
    Zhao, Ye
    Zheng, Haoliang
    Zhang, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [28] SDDNet: Infrared small and dim target detection network
    Ma, Long
    Shu, Cong
    Huang, Shanshan
    Wei, Zoujian
    Wang, Xuhao
    Wei, Yanxi
    CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY, 2023, 8 (04) : 1226 - 1236
  • [29] Dual Enhancement Network for Infrared Small Target Detection
    Wu, Xinyi
    Hu, Xudong
    Lu, Huaizheng
    Li, Chaopeng
    Zhang, Lei
    Huang, Weifang
    APPLIED SCIENCES-BASEL, 2024, 14 (10):
  • [30] Feedback Information-Guided Spectral Variability Attention Network for Hyperspectral Unmixing
    Xiang, Shu
    Li, Xiaorun
    Chen, Shuhan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62