PERVERSE SHEAVES ON VARIETIES WITH LARGE FUNDAMENTAL GROUPS

被引:0
|
作者
Arapura, Donu [1 ]
Wang, Botong [2 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
[2] Univ Wisconsin Madison, Dept Math, 480 Lincoln Dr, Madison, WI 53706 USA
关键词
MANIFOLDS; THEOREMS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We conjecture that any perverse sheaf on a compact aspherical Ka<spacing diaeresis>hler manifold has non-negative Euler characteristic. This extends the Singer-Hopf conjecture in the Ka<spacing diaeresis>hler setting. We verify the stronger conjecture when the manifold X has non-positive sectional curvature. We also show that the conjecture holds when X is projective and in possession of a faithful semi-simple rigid local system. The first result is proved by expressing the Euler characteristic as an intersection number involving the characteristic cycle, and then using the curvature conditions to deduce non- negativity. For the second result, we have that the local system underlies a complex variation of Hodge structure. We then deduce the desired inequality from the curvature properties of the image of the period map.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 50 条
  • [21] Perverse sheaves on Grassmannians
    Braden, T
    CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 2002, 54 (03): : 493 - 532
  • [22] Artin perverse sheaves
    Ruimy, Raphael
    JOURNAL OF ALGEBRA, 2024, 639 : 596 - 677
  • [23] Perverse sheaves and quivers
    Gelfand, S
    MacPherson, R
    Vilonen, K
    DUKE MATHEMATICAL JOURNAL, 1996, 83 (03) : 621 - 643
  • [24] PERVERSE COHERENT SHEAVES
    Arinkin, Dmitry
    Bezrukavnikov, Roman
    MOSCOW MATHEMATICAL JOURNAL, 2010, 10 (01) : 3 - 29
  • [25] Perverse monodromic sheaves
    Gouttard, Valentin
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2022, 106 (01): : 388 - 424
  • [26] ENTALE FUNDAMENTAL GROUPS OF KAWAMATA LOG TERMINAL SPACES, FLAT SHEAVES, AND QUOTIENTS OF ABELIAN VARIETIES
    Greb, Daniel
    Kebekus, Stefan
    Peternell, Thomas
    DUKE MATHEMATICAL JOURNAL, 2016, 165 (10) : 1965 - 2004
  • [27] Perverse sheaves on semi-abelian varieties-a survey of properties and applications
    Liu, Yongqiang
    Maxim, Laurentiu
    Wang, Botong
    EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (03) : 977 - 997
  • [28] Perverse sheaves on Riemann surfaces as Milnor sheaves
    Dyckerhoff, Tobias
    Kapranov, Mikhail
    Soibelman, Yan
    FORUM OF MATHEMATICS SIGMA, 2023, 11
  • [29] Characteristic classes and Hilbert-Poincar, series for perverse sheaves on abelian varieties
    Kraemer, Thomas
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1337 - 1356
  • [30] Perverse sheaves, base change homomorphism and fundamental lemma of Jacquet and Ye.
    Ngô, BC
    ANNALES SCIENTIFIQUES DE L ECOLE NORMALE SUPERIEURE, 1999, 32 (05): : 619 - 679