Critical Gaussian multiplicative chaos revisited

被引:0
|
作者
Lacoin, Hubert [1 ]
机构
[1] IMPA, Rio De Janeiro, Brazil
关键词
Random distributions; log-correlated fields; Gaussian Multiplicative Chaos; BROWNIAN-MOTION; CONVERGENCE;
D O I
10.1214/23-AIHP1411
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We present new, short and self-contained proofs of the convergence (with an adequate renormalization) of four different sequences to the critical Gaussian Multiplicative Chaos: the derivative martingale, the critical martingale, the exponential of the mollified field and the subcritical Gaussian Multiplicative Chaos.
引用
收藏
页码:2328 / 2351
页数:24
相关论文
共 50 条
  • [31] A UNIVERSALITY RESULT FOR SUBCRITICAL COMPLEX GAUSSIAN MULTIPLICATIVE CHAOS
    Lacoin, Hubert
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (01): : 269 - 293
  • [32] Lee-Yang Property and Gaussian Multiplicative Chaos
    Newman, Charles M.
    Wu, Wei
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2019, 369 (01) : 153 - 170
  • [33] Negative moments for Gaussian multiplicative chaos on fractal sets
    Garban, Christophe
    Holden, Nina
    Sepulveda, Avelio
    Sun, Xin
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2018, 23 : 1 - 10
  • [34] Uniqueness of critical Gaussian chaos
    Junnila, Janne
    Saksman, Eero
    ELECTRONIC JOURNAL OF PROBABILITY, 2017, 22
  • [35] The conditional Gaussian multiplicative chaos structure underlying a critical continuum random polymer model on a diamond fractal
    Clark, Jeremy Thane
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2023, 59 (03): : 1203 - 1222
  • [36] BASIC PROPERTIES OF CRITICAL LOGNORMAL MULTIPLICATIVE CHAOS
    Barral, Julien
    Kupiainen, Antti
    Nikula, Miika
    Saksman, Eero
    Webb, Christian
    ANNALS OF PROBABILITY, 2015, 43 (05): : 2205 - 2249
  • [37] Convergence of Processes Time-Changed by Gaussian Multiplicative Chaos
    Ooi, Takumu
    POTENTIAL ANALYSIS, 2025,
  • [38] Gaussian fields, equilibrium potentials and multiplicative chaos for Dirichlet forms
    Masatoshi Fukushima
    Yoichi Oshima
    Potential Analysis, 2021, 55 : 285 - 337
  • [39] Gaussian fields, equilibrium potentials and multiplicative chaos for Dirichlet forms
    Fukushima, Masatoshi
    Oshima, Yoichi
    POTENTIAL ANALYSIS, 2021, 55 (02) : 285 - 337
  • [40] THE TAIL EXPANSION OF GAUSSIAN MULTIPLICATIVE CHAOS AND THE LIOUVILLE REFLECTION COEFFICIENT
    Rhodes, Remi
    Vargas, Vincent
    ANNALS OF PROBABILITY, 2019, 47 (05): : 3082 - 3107