Deep Learning-Based Detection for Marker Codes Over Insertion and Deletion Channels

被引:1
|
作者
Ma, Guochen [1 ]
Jiao, Xiaopeng [1 ]
Mu, Jianjun [1 ]
Han, Hui [1 ]
Yang, Yaming [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Bidirectional gated recurrent unit (bi-GRU); deep unfolding; insertions and deletions; marker codes; model-driven deep learning; RELIABLE COMMUNICATION; CORRECTING CODES; SYNCHRONIZATION;
D O I
10.1109/TCOMM.2024.3394039
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Marker code is an effective coding scheme to protect data from insertions and deletions. It has potential applications in future storage systems, such as DNA storage and racetrack memory. When decoding marker codes, perfect channel state information (CSI), i.e., insertion and deletion probabilities, are required to detect insertion and deletion errors. Sometimes, the perfect CSI is not easy to obtain or the accurate channel model is unknown. Therefore, it is deserved to develop detecting algorithms for marker code without the knowledge of perfect CSI. In this paper, we propose two CSI-agnostic detecting algorithms for marker code based on deep learning. The first one is a model-driven deep learning method, which deep unfolds the original iterative detecting algorithm of marker code. In this method, CSI become weights in neural networks and these weights can be learned from training data. The second one is a data-driven method which is an end-to-end system based on the deep bidirectional gated recurrent unit network. Simulation results show that error performances of the proposed methods are significantly better than that of the original detection algorithm with CSI uncertainty. Furthermore, the proposed data-driven method exhibits better error performances than other methods for unknown channel models.
引用
收藏
页码:5945 / 5959
页数:15
相关论文
共 50 条
  • [21] Structured Concatenation of Protograph LDPC Codes and Markers for Insertion/Deletion Channels
    Shibata, Ryo
    Hosoya, Gou
    Yashima, Hiroyuki
    PROCEEDINGS OF 2018 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2018), 2018, : 374 - 378
  • [22] Design of Irregular LDPC Codes without Markers for Insertion/Deletion Channels
    Shibata, Ryo
    Hosoya, Gou
    Yashima, Hiroyuki
    2019 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2019,
  • [23] A Deep Learning-Based SAR Ship Detection
    Yu, Chushi
    Shin, Yoan
    2023 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION, ICAIIC, 2023, : 744 - 747
  • [24] Deep Learning-Based Atmospheric Visibility Detection
    Qu, Yawei
    Fang, Yuxin
    Ji, Shengxuan
    Yuan, Cheng
    Wu, Hao
    Zhu, Shengbo
    Qin, Haoran
    Que, Fan
    ATMOSPHERE, 2024, 15 (11)
  • [25] Deep Learning-Based Concept Detection in vitrivr
    Rossetto, Luca
    Parian, Mahnaz Amiri
    Gasser, Ralph
    Giangreco, Ivan
    Heller, Silvan
    Schuldt, Heiko
    MULTIMEDIA MODELING, MMM 2019, PT II, 2019, 11296 : 616 - 621
  • [26] Deep Learning-Based Arrhythmia Detection in Electrocardiograph
    Meng, Yang
    Liang, Guoxin
    Yue, Mei
    SCIENTIFIC PROGRAMMING, 2021, 2021 (2021)
  • [27] Deep learning-based detection of seedling development
    Samiei, Salma
    Rasti, Pejman
    Ly Vu, Joseph
    Buitink, Julia
    Rousseau, David
    PLANT METHODS, 2020, 16 (01)
  • [28] A Survey of Deep Learning-Based Object Detection
    Jiao, Licheng
    Zhang, Fan
    Liu, Fang
    Yang, Shuyuan
    Li, Lingling
    Feng, Zhixi
    Qu, Rong
    IEEE ACCESS, 2019, 7 : 128837 - 128868
  • [29] Deep Learning-Based Crack Detection: A Survey
    Nguyen, Son Dong
    Tran, Thai Son
    Tran, Van Phuc
    Lee, Hyun Jong
    Piran, Md. Jalil
    Le, Van Phuc
    INTERNATIONAL JOURNAL OF PAVEMENT RESEARCH AND TECHNOLOGY, 2023, 16 (04) : 943 - 967
  • [30] Deep Learning-Based Crack Detection: A Survey
    Son Dong Nguyen
    Thai Son Tran
    Van Phuc Tran
    Hyun Jong Lee
    Md. Jalil Piran
    Van Phuc Le
    International Journal of Pavement Research and Technology, 2023, 16 : 943 - 967