CorrMatch: Label Propagation via Correlation Matching for Semi-Supervised Semantic Segmentation

被引:8
|
作者
Sun, Boyuan [1 ]
Yang, Yuqi [1 ]
Le, Zhang [3 ]
Cheng, Ming-Ming [1 ,2 ]
Hou, Qibin [1 ,2 ]
机构
[1] Nankai Univ, CS, VCIP, Tianjin, Peoples R China
[2] NKIARI, Shenzhen, Peoples R China
[3] UESTC, SICE, Chengdu, Peoples R China
关键词
FRAMEWORK;
D O I
10.1109/CVPR52733.2024.00299
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a simple but performant semi-supervised semantic segmentation approach, called CorrMatch. Previous approaches mostly employ complicated training strategies to leverage unlabeled data but overlook the role of correlation maps in modeling the relationships between pairs of locations. We observe that the correlation maps not only enable clustering pixels of the same category easily but also contain good shape information, which previous works have omitted. Motivated by these, we aim to improve the use efficiency of unlabeled data by designing two novel label propagation strategies. First, we propose to conduct pixel propagation by modeling the pairwise similarities of pixels to spread the high-confidence pixels and dig out more. Then, we perform region propagation to enhance the pseudo labels with accurate class-agnostic masks extracted from the correlation maps. CorrMatch achieves great performance on popular segmentation benchmarks. Taking the DeepLabV3+ with ResNet-101 backbone as our segmentation model, we receive a 76%+ mIoU score on the Pascal VOC 2012 dataset with only 92 annotated images. Code is available at https://github.com/BBBBchan/CorrMatch.
引用
收藏
页码:3097 / 3107
页数:11
相关论文
共 50 条
  • [21] LaserMix for Semi-Supervised LiDAR Semantic Segmentation
    Kong, Lingdong
    Ren, Jiawei
    Pan, Liang
    Liu, Ziwei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21705 - 21715
  • [22] MULTIVALUED LABEL DIFFUSION FOR SEMI-SUPERVISED SEGMENTATION
    Buyssens, Pierre
    Lezoray, Olivier
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 3275 - 3279
  • [23] Semi-Supervised Semantic Segmentation With Region Relevance
    Chen, Rui
    Chen, Tao
    Wang, Qiong
    Yao, Yazhou
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 852 - 857
  • [24] A semi-supervised approach for the semantic segmentation of trajectories
    Soares Junior, Amilcar
    Times, Valeria Cesario
    Renso, Chiara
    Matwin, Stan
    Cabral, Lucidio A. F.
    2018 19TH IEEE INTERNATIONAL CONFERENCE ON MOBILE DATA MANAGEMENT (MDM 2018), 2018, : 145 - 154
  • [25] Revisiting Consistency for Semi-Supervised Semantic Segmentation
    Grubisic, Ivan
    Orsic, Marin
    Segvic, Sinisa
    SENSORS, 2023, 23 (02)
  • [26] Information Transfer in Semi-Supervised Semantic Segmentation
    Wu, Jiawei
    Fan, Haoyi
    Li, Zuoyong
    Liu, Guang-Hai
    Lin, Shouying
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (02) : 1174 - 1185
  • [27] Semi-Supervised Learning on Data Streams via Temporal Label Propagation
    Wagner, Tal
    Guha, Sudipto
    Kasiviswanathan, Shiva Prasad
    Mishra, Nina
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [28] note on label propagation for semi-supervised learning
    Bodo, Zalan
    Csato, Lehel
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2015, 7 (01) : 18 - 30
  • [29] Label Propagation for Deep Semi-supervised Learning
    Iscen, Ahmet
    Tolias, Giorgos
    Avrithis, Yannis
    Chum, Ondrej
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5065 - 5074
  • [30] Logistic Label Propagation for Semi-supervised Learning
    Watanabe, Kenji
    Kobayashi, Takumi
    Otsu, Nobuyuki
    NEURAL INFORMATION PROCESSING: THEORY AND ALGORITHMS, PT I, 2010, 6443 : 462 - 469