Tackling Domain Generalization for Out-of-Distribution Endoscopic Imaging

被引:0
|
作者
Ali Teevno, Mansoor [1 ]
Ochoa-Ruiz, Gilberto [1 ]
Ali, Sharib [2 ]
机构
[1] Tecnol Monterrey, Sch Engn & Sci, Monterrey, Mexico
[2] Univ Leeds, Sch Comp, Leeds, W Yorkshire, England
关键词
CANCER; SEGMENTATION; DIAGNOSIS;
D O I
10.1007/978-3-031-73290-4_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
While recent advances in deep learning (DL) for surgical scene segmentation have yielded promising results on single-centre and single-imaging modality data, these methods usually do not generalise to unseen distribution or unseen modalities. Even though human experts can identify visual appearances, DL methods often fail to do so if data samples do not follow the similar data distribution. Current literature for tackling domain gaps in modality changes has been done mostly for natural scene data. However, these methods cannot be directly applied to the endoscopic data as the visual cues are very limited compared to the natural scene data. In this work, we exploit the style and content information in the image by performing instance normalization and feature covariance mapping techniques for preserving robust and generalizable feature representations. Further, to eliminate the risk of removing salient feature representation associated with the objects of interest, we introduce a restitution module within the feature learning ResNet backbone that allows the retention of useful task-relevant features. Our proposed method obtained 13.7% improvement over the baseline DeepLabv3+ and nearly 8% improvement on recent state-of-the-art (SOTA) methods for the target (different modality) set of EndoUDA polyp dataset. Similarly, our method achieved 19% improvement over the baseline and 6% over best performing SOTA on EndoUDA Barrett's esophagus (BE) data.
引用
收藏
页码:43 / 52
页数:10
相关论文
共 50 条
  • [11] A Stable Vision Transformer for Out-of-Distribution Generalization
    Yu, Haoran
    Liu, Baodi
    Wang, Yingjie
    Zhang, Kai
    Tao, Dapeng
    Liu, Weifeng
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII, 2024, 14432 : 328 - 339
  • [12] Counterfactual Active Learning for Out-of-Distribution Generalization
    Deng, Xun
    Wang, Wenjie
    Feng, Fuli
    Zhang, Hanwang
    He, Xiangnan
    Liao, Yong
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 11362 - 11377
  • [13] Diverse Weight Averaging for Out-of-Distribution Generalization
    Rame, Alexandre
    Kirchmeyer, Matthieu
    Rahier, Thibaud
    Rakotomamonjy, Alain
    Gallinari, Patrick
    Cord, Matthieu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [14] Out-of-distribution Generalization with Causal Invariant Transformations
    Wang, Ruoyu
    Yi, Mingyang
    Chen, Zhitang
    Zhu, Shengyu
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 375 - 385
  • [15] Deep Stable Learning for Out-Of-Distribution Generalization
    Zhang, Xingxuan
    Cui, Peng
    Xu, Renzhe
    Zhou, Linjun
    He, Yue
    Shen, Zheyan
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 5368 - 5378
  • [16] Out-of-distribution generalization for learning quantum dynamics
    Matthias C. Caro
    Hsin-Yuan Huang
    Nicholas Ezzell
    Joe Gibbs
    Andrew T. Sornborger
    Lukasz Cincio
    Patrick J. Coles
    Zoë Holmes
    Nature Communications, 14
  • [17] Out-of-Distribution Generalization via Risk Extrapolation
    Krueger, David
    Caballero, Ethan
    Jacobsen, Joern-Henrik
    Zhang, Amy
    Binas, Jonathan
    Zhang, Dinghuai
    Le Priol, Remi
    Courville, Aaron
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [18] Towards a Theoretical Framework of Out-of-Distribution Generalization
    Ye, Haotian
    Xie, Chuanlong
    Cai, Tianle
    Li, Ruichen
    Li, Zhenguo
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [19] Selecting Augmentation Methods for Domain Generalization and Out-of-Distribution Detection Using Unlabeled Data
    Kucuktas, Ulku Tuncer
    Uysal, Fatih
    Hardalac, Firat
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [20] Toward Out-of-Distribution Generalization Through Inductive Biases
    Moruzzi, Caterina
    PHILOSOPHY AND THEORY OF ARTIFICIAL INTELLIGENCE 2021, 2022, 63 : 57 - 66