Surface acidity regulation for boosting Li2O2 decomposition towards lower charge overpotential Li-O2 batteries

被引:2
|
作者
Liu, Qian [1 ]
Huang, Renshu [1 ]
Liang, Xincheng [1 ]
Zhai, Zhixiang [1 ]
Meng, Dexin [1 ]
Yu, Huyi [1 ]
Wen, Huan [1 ]
Yin, Shibin [1 ]
机构
[1] Guangxi Univ, Sch Chem & Chem Engn, Guangxi Key Lab Electrochem Energy Mat, 100 Daxue Rd, Nanning 530004, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-O; 2; batteries; Charge overpotential; Li; O; decomposition; Surface acidity; Electronic transfer; TOTAL-ENERGY CALCULATIONS; CATALYTIC-OXIDATION; OXIDE; PERFORMANCE; ADSORPTION; VACANCIES; CO3O4; CO;
D O I
10.1016/j.ensm.2024.103921
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The discharge product Li2O2 with a wide band gap requires a high potential to decompose, hindering the practical application of Li-O2 batteries (LOBs). Herein, a surface acidity regulation strategy is proposed to boost Li2O2 decomposition through doping Mn atoms into Co3O4 catalyst. Experimental results and theoretical calculations demonstrate that the doped Mn atoms increase empty orbitals near the Fermi level to enhance the surface acidity of Co3O4. Among the doped catalysts, the 15%Mn-doped Co3O4 with a suitable surface acidity of 347.5 mu mol g- 1 promotes the electronic transfer from Li2O2 to Co3O4 and coordinates the reduction of the desorption barriers of Li+ and O2, which effectively boosts the decomposition of Li2O2 to reduce the charge overpotential of LOBs, thus achieving a low charge overpotential (1.18 V at 1000 mA g- 1) and great cyclic stability (350 cycles at 4000 mA g- 1) in LOBs. Even under the limited specific capacity of 2000 mAh g- 1, the 15%Mn-doped Co3O4-based LOBs exhibit a great cycle stability of 250 cycles. This work elucidates the critical role of catalyst surface acidity regulation in boosting Li2O2 decomposition, thus reducing the charge overpotential of LOBs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Confining Li2O2 in tortuous pores of mesoporous cathodes to facilitate low charge overpotentials for Li-O2 batteries
    Yin Zhou
    Yong Zhao
    Zhenjie Liu
    Zhangquan Peng
    Li Wang
    Wei Chen
    Journal of Energy Chemistry, 2021, 55 (04) : 55 - 61
  • [22] The Decisive Role of Li2O2 Desorption for Oxygen Reduction Reaction in Li-O2 Batteries
    Xu, Chengyang
    Ge, Aimin
    Kannari, Koki
    Peng, Baoxu
    Xue, Min
    Ding, Bing
    Inoue, Ken-ichi
    Zhang, Xiaogang
    Ye, Shen
    ACS ENERGY LETTERS, 2023, 8 (03) : 1289 - 1299
  • [23] Influence of Li2O2 morphology on oxygen reduction and evolution kinetics in Li-O2 batteries
    Gallant, Betar M.
    Kwabi, David G.
    Mitchell, Robert R.
    Zhou, Jigang
    Thompson, Carl V.
    Shao-Horn, Yang
    ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (08) : 2518 - 2528
  • [24] The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices
    Daniela M.Josepetti
    Bianca P.Sousa
    Simone A.J.Rodrigues
    Renato G.Freitas
    Gustavo Doubek
    Journal of Energy Chemistry, 2024, 88 (01) : 223 - 231
  • [25] Combining Accurate O2 and Li2O2 Assays to Separate Discharge and Charge Stability Limitations in Nonaqueous Li-O2 Batteries
    McCloskey, Bryan D.
    Valery, Alexia
    Luntz, Alan C.
    Gowda, Sanketh R.
    Wallraff, Gregory M.
    Garcia, Jeannette M.
    Mori, Takashi
    Krupp, Leslie E.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2013, 4 (17): : 2989 - 2993
  • [26] The initial stages of Li2O2 formation during oxygen reduction reaction in Li-O2 batteries: The significance of Li2O2 in charge-transfer reactions within devices
    Josepetti, Daniela M.
    Sousa, Bianca P.
    Rodrigues, Simone A. J.
    Freitas, Renato G.
    Doubek, Gustavo
    JOURNAL OF ENERGY CHEMISTRY, 2024, 88 : 223 - 231
  • [27] Recent advances in understanding of the mechanism and control of Li2O2 formation in aprotic Li-O2 batteries
    Lyu, Zhiyang
    Zhou, Yin
    Dai, Wenrui
    Cui, Xinhang
    Lai, Min
    Wang, Li
    Huo, Fengwei
    Huang, Wei
    Hu, Zheng
    Chen, Wei
    CHEMICAL SOCIETY REVIEWS, 2017, 46 (19) : 6046 - 6072
  • [28] The Role of Electrolyte Solvent Stability and Electrolyte Impurities in the Electrooxidation of Li2O2 in Li-O2 Batteries
    Meini, Stefano
    Solchenbach, Sophie
    Piana, Michele
    Gasteiger, Hubert A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (09) : A1306 - A1314
  • [29] Quantitation of Li2O2 stored in Li-O2 batteries based on its reaction with an oxoammonium salt
    Hase, Yoko
    Ito, Emi
    Shiga, Tohru
    Mizuno, Fuminori
    Nishikoori, Hidetaka
    Iba, Hideki
    Takechi, Kensuke
    CHEMICAL COMMUNICATIONS, 2013, 49 (75) : 8389 - 8391
  • [30] Solid-state activation of Li2O2 oxidation kinetics and implications for Li-O2 batteries
    Yao, Koffi P. C.
    Risch, Marcel
    Sayed, Sayed Youssef
    Lee, Yueh-Lin
    Harding, Jonathon R.
    Grimaud, Alexis
    Pour, Nir
    Xu, Zhichuan
    Zhou, Jigang
    Mansour, Azzam
    Barde, Fanny
    Shao-Horn, Yang
    ENERGY & ENVIRONMENTAL SCIENCE, 2015, 8 (08) : 2417 - 2426