Informative Scene Graph Generation via Debiasing

被引:0
|
作者
Gao, Lianli [1 ]
Lyu, Xinyu [2 ]
Guo, Yuyu [1 ]
Hu, Yuxuan [3 ]
Li, Yuan-Fang [4 ]
Xu, Lu [5 ]
Shen, Heng Tao [6 ]
Song, Jingkuan [6 ]
机构
[1] Univ Elect Sci & Technol China, Shenzhen Inst Adv Study, Shenzhen, Peoples R China
[2] Southwestern Univ Finance & Econ, Chengdu, Peoples R China
[3] Southwest Univ, Chongqing, Peoples R China
[4] Monash Univ, Melbourne, Vic, Australia
[5] Kuaishou, Beijing, Peoples R China
[6] Tongji Univ, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
Scene graph generation; Visual relationship; Debaising; Information content; SEMANTIC SIMILARITY; ATTENTION;
D O I
10.1007/s11263-025-02365-y
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene graph generation aims to detect visual relationship triplets, (subject, predicate, object). Due to biases in data, current models tend to predict common predicates, e.g., "on" and "at", instead of informative ones, e.g., "standing on" and "looking at". This tendency results in the loss of precise information and overall performance. If a model only uses "stone on road" rather than "stone blocking road" to describe an image, it may be a grave misunderstanding. We argue that this phenomenon is caused by two imbalances: semantic space level imbalance and training sample level imbalance. For this problem, we propose DB-SGG, an effective framework based on debiasing but not the conventional distribution fitting. It integrates two components: Semantic Debiasing (SD) and Balanced Predicate Learning (BPL), for these imbalances. SD utilizes a confusion matrix and a bipartite graph to construct predicate relationships. BPL adopts a random undersampling strategy and an ambiguity removing strategy to focus on informative predicates. Benefiting from the model-agnostic process, our method can be easily applied to SGG models and outperforms Transformer by 136.3%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$136.3\%$$\end{document}, 119.5%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$119.5\%$$\end{document}, and 122.6%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$122.6\%$$\end{document} on mR@20 at three SGG sub-tasks on the SGG-VG dataset. Our method is further verified on another complex SGG dataset (SGG-GQA) and two downstream tasks (sentence-to-graph retrieval and image captioning).
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Uncertainty-Aware Scene Graph Generation
    Li, Xuewei
    Wu, Tao
    Zheng, Guangcong
    Yu, Yunlong
    Li, Xi
    PATTERN RECOGNITION LETTERS, 2023, 167 : 30 - 37
  • [42] One-shot Scene Graph Generation
    Guo, Yuyu
    Song, Jingkuan
    Gao, Lianli
    Shen, Heng Tao
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 3090 - 3098
  • [43] Segmentation-grounded Scene Graph Generation
    Khandelwal, Siddhesh
    Suhail, Mohammed
    Sigal, Leonid
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15859 - 15869
  • [44] Visual Distant Supervision for Scene Graph Generation
    Yao, Yuan
    Zhang, Ao
    Han, Xu
    Li, Mengdi
    Weber, Cornelius
    Liu, Zhiyuan
    Wermter, Stefan
    Sun, Maosong
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 15796 - 15806
  • [45] Predicate Correlation Learning for Scene Graph Generation
    Tao, Leitian
    Mi, Li
    Li, Nannan
    Cheng, Xianhang
    Hu, Yaosi
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 4173 - 4185
  • [46] Kumaraswamy Wavelet for Heterophilic Scene Graph Generation
    Chen, Lianggangxu
    Song, Youqi
    Lin, Shaohui
    Wang, Changbo
    He, Gaoqi
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 2, 2024, : 1138 - 1146
  • [47] Neural Belief Propagation for Scene Graph Generation
    Liu, Daqi
    Bober, Miroslaw
    Kittler, Josef
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (08) : 10161 - 10172
  • [48] Multimodal Context Embedding for Scene Graph Generation
    Jung, Gayoung
    Kim, Incheol
    JOURNAL OF INFORMATION PROCESSING SYSTEMS, 2020, 16 (06): : 1250 - 1260
  • [49] Quaternion Relation Embedding for Scene Graph Generation
    Wang, Zheng
    Xu, Xing
    Wang, Guoqing
    Yang, Yang
    Shen, Heng Tao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8646 - 8656
  • [50] Generation of Shadows in Scene Graph based VR
    Kuehl, Bjoern
    Blom, Kristopher J.
    Beckhaus, Steffi
    WSCG 2007, FULL PAPERS PROCEEDINGS I AND II, 2007, : 295 - 302