Time-space sampled-data control for semi-Markov reaction-diffusion neural networks: Adopting multiple event-triggered protocols

被引:0
|
作者
Wei, Wanying [1 ]
Zhang, Bin [1 ]
Cheng, Jun [1 ]
Cao, Jinde [2 ]
Zhang, Dan [3 ]
Yan, Huaicheng [4 ]
机构
[1] Guangxi Normal Univ, Ctr Appl Math Guangxi, Sch Math & Stat, Guilin 541006, Peoples R China
[2] Southeast Univ, Sch Math, Nanjing 211189, Peoples R China
[3] Zhejiang Univ Technol, Res Ctr Automat & Artificial Intelligence, Hangzhou 310014, Peoples R China
[4] East China Univ Sci & Technol, Shanghai 200237, Peoples R China
关键词
Multiple event-triggered protocol; Reaction-diffusion neural networks; Semi-Markov process; JUMP SYSTEMS; SYNCHRONIZATION;
D O I
10.1016/j.ins.2024.121779
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study focuses on time-space sampled-data control for semi-Markov reaction-diffusion neural networks (SMRDNNs) utilizing event-triggered protocols (ETPs) and a multiasynchronous strategy. To mitigate data confusion caused by significant transmission delays, a novel packet loss scheduling approach is developed, leading to the formation of a unified SMRDNN model. A hidden semi-Markov model is adopted to address asynchronous dynamics among subsystems, ETPs, and the controller. By simultaneously exploring multiple ETPs in the temporal dimension and sampling mechanisms in the spatial dimension, a new space-time sampled-data control method is devised. This strategy effectively reduces communication resource usage while maintaining control performance. Finally, an illustrative example is provided to demonstrate the effectiveness and superiority of the attained theoretical results.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] Intermittent sampled-data synchronization of delayed reaction-diffusion neural networks
    Chen, Hong-Yu
    Wang, Zi-Peng
    Qiao, Junfei
    Wang, Jin-Liang
    Wu, Huai-Ning
    Huang, Tingwen
    NEUROCOMPUTING, 2025, 630
  • [22] Event-triggered pinning passivity and synchronization of multiple spatial diffusion coupled reaction-diffusion neural networks
    Wang, Yihao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [23] Synchronization for Semi-Markovian Jumping Reaction-Diffusion Complex Dynamical Networks: A Space-Time Sampled-Data Control Scheme
    Song, Xiaona
    Zhang, Renzhi
    Ahn, Choon Ki
    Song, Shuai
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2022, 9 (04): : 2684 - 2696
  • [24] State Observer Design of Coupled Genetic Regulatory Networks With Reaction-Diffusion Terms via Time-Space Sampled-Data Communications
    Song, Xaona
    Li, Xingru
    Song, Shuai
    Ahn, Choon Ki
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2022, 19 (06) : 3704 - 3714
  • [25] Event-triggered H∞ state estimation for semi-Markov jumping discrete-time neural networks with quantization
    Rakkiyappan, R.
    Maheswari, K.
    Velmurugan, G.
    Park, Ju H.
    NEURAL NETWORKS, 2018, 105 : 236 - 248
  • [26] Event-triggered boundary feedback synchronisation control of nonlinear coupling reaction-diffusion neural networks
    Fan, Xueru
    Kou, Chunhai
    INTERNATIONAL JOURNAL OF CONTROL, 2024, 97 (06) : 1210 - 1222
  • [27] Event-triggered control for sampled-data set stabilization of switched delayed boolean control networks
    Kong, Xiangshan
    Li, Haitao
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (02) : 2305 - 2318
  • [28] Event-triggered Control for Sampled-Data Set Stabilization of Switched Delayed Logical Control Networks
    Liang Yan
    Song Changxin
    Kong Xiangshan
    Yang Xinrong
    Li Haitao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 1005 - 1010
  • [29] Event-triggered H?/passive synchronization for Markov jumping reaction-diffusion neural networks under deception attacks
    Zhang, Ziwei
    Li, Feng
    Fang, Ting
    Shi, Kaibo
    Shen, Hao
    ISA TRANSACTIONS, 2022, 129 : 36 - 43
  • [30] Finite-time H∞ synchronization of semi-Markov jump neural networks with two delay components with stochastic sampled-data control
    Radhika, T.
    Chandrasekar, A.
    Vijayakumar, V.
    BULLETIN DES SCIENCES MATHEMATIQUES, 2024, 195