On the determinants of matrices with elements from arbitrary sets

被引:0
|
作者
Shkredov, Ilya D. [1 ,2 ]
Shparlinski, Igor E. [3 ]
机构
[1] Purdue Univ, Dept Math, 150 N Univ St, W Lafayette, IN 47907 USA
[2] London Inst Math Sci, London, England
[3] Univ New South Wales, Sch Math & Stat, Sydney, NSW, Australia
基金
澳大利亚研究理事会;
关键词
SINGULAR MATRICES; RATIONAL-POINTS; DENSITY; GROWTH; NUMBER;
D O I
10.1112/mtk.70018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Recently there have been several works estimating the number of nxn$n\times n$ matrices with elements from some finite sets X${\mathcal {X}}$ of arithmetic interest and of a given determinant. Typically such results are compared with the trivial upper bound OXn2-1$O\left(X<^>{n<^>2-1}\right)$, where X$X$ is the cardinality of X${\mathcal {X}}$. Here we show that even for arbitrary sets X subset of R${\mathcal {X}}\subseteq {\mathbb {R}}$, some recent results from additive combinatorics enable us to obtain a stronger bound with a power saving.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] THE DETERMINANTS OF MATRICES WHOSE ELEMENTS DECREASE GEOMETRICALLY IN THE DIAGONAL DIRECTION .2.
    KATO, Y
    KOIKE, M
    STUDIES IN APPLIED MATHEMATICS, 1990, 82 (04) : 291 - 304
  • [22] ON ARBITRARY SETS AND ZFC
    Ferreiros, Jose
    BULLETIN OF SYMBOLIC LOGIC, 2011, 17 (03) : 361 - 393
  • [23] The derivates of arbitrary functions over arbitrary sets
    Jeffery, RL
    ANNALS OF MATHEMATICS, 1935, 36 : 438 - 447
  • [24] On matrices from non negative elements.
    Frobenius, G
    SITZUNGSBERICHTE DER KONIGLICH PREUSSISCHEN AKADEMIE DER WISSENSCHAFTEN, 1912, : 456 - 477
  • [25] A concentration function estimate and intersective sets from matrices
    Balister, Paul
    McCutcheon, Randall
    ISRAEL JOURNAL OF MATHEMATICS, 2012, 189 (01) : 413 - 436
  • [26] A concentration function estimate and intersective sets from matrices
    Paul Balister
    Randall McCutcheon
    Israel Journal of Mathematics, 2012, 189 : 413 - 436
  • [27] Anti-diagonalization theory and algorithm of matrices-from skew-symmetric matrices to arbitrary matrices
    Wu, Yunyun
    Li, Yayun
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 209 : 44 - 54
  • [28] PARTITIONS OF SETS OF MATRICES
    SMALLWOOD, CV
    DISCRETE MATHEMATICS, 1975, 13 (03) : 261 - 275
  • [29] On primitivity of sets of matrices
    Blondel, Vincent D.
    Jungers, Raphael M.
    Olshevsky, Alex
    AUTOMATICA, 2015, 61 : 80 - 88
  • [30] On Primitivity of Sets of Matrices
    Blondel, Vincent D.
    Jungers, Raphael M.
    Olshevsky, Alex
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 1360 - 1365