Spatiotemporal Variability in Wind Turbine Blade Leading Edge Erosion

被引:0
|
作者
Pryor, Sara C. [1 ]
Coburn, Jacob J. [1 ]
Barthelmie, Rebecca J. [2 ]
机构
[1] Cornell Univ, Dept Earth & Atmospher Sci, Ithaca, NY 14853 USA
[2] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
blades; CONUS; hydroclimate; LCoE; LEE; operations and maintenance; Springer model; USA; wind energy; RAIN EROSION; HAIL; PRECIPITATION; ENERGY; CLIMATOLOGY;
D O I
10.3390/en18020425
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Wind turbine blade leading edge erosion (LEE) reduces energy production and increases wind energy operation and maintenance costs. Degradation of the blade coating and ultimately damage to the underlying blade structure are caused by collisions of falling hydrometeors with rotating blades. The selection of optimal methods to mitigate/reduce LEE are critically dependent on the rates of coating fatigue accumulation at a given location and the time variance in the accumulation of material stresses. However, no such assessment currently exists for the United States of America (USA). To address this research gap, blade coating lifetimes at 883 sites across the USA are generated based on high-frequency (5-min) estimates of material fatigue derived using a mechanistic model and robust meteorological measurements. Results indicate blade coating failure at some sites in as few as 4 years, and that the frequency and intensity of material stresses are both highly episodic and spatially varying. Time series analyses indicate that up to one-third of blade coating lifetime is exhausted in just 360 5-min periods in the Southern Great Plains (SGP). Conversely, sites in the Pacific Northwest (PNW) exhibit the same level of coating lifetime depletion in over three times as many time periods. Thus, it may be more cost-effective to use wind turbine deregulation (erosion-safe mode) for damage reduction and blade lifetime extension in the SGP, while the application of blade leading edge protective measures may be more appropriate in the PNW. Annual total precipitation and mean wind speed are shown to be poor predictors of blade coating lifetime, re-emphasizing the need for detailed modeling studies such as that presented herein.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Effects of leading edge erosion on wind turbine blade performance
    Sareen, Agrim
    Sapre, Chinmay A.
    Selig, Michael S.
    WIND ENERGY, 2014, 17 (10) : 1531 - 1542
  • [2] Sub-Regional Variability in Wind Turbine Blade Leading-Edge Erosion Potential
    Letson, F.
    Barthelmie, R. J.
    Pryor, S. C.
    SCIENCE OF MAKING TORQUE FROM WIND (TORQUE 2020), PTS 1-5, 2020, 1618
  • [3] Investigation on aerodynamic noise for leading edge erosion of wind turbine blade
    Wang, Hongyu
    Chen, Bin
    JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2023, 240
  • [4] A wind turbine blade leading edge rain erosion computational framework
    Contreras Lopez, Javier
    Kolios, Athanasios
    Wang, Lin
    Chiachio, Manuel
    RENEWABLE ENERGY, 2023, 203 : 131 - 141
  • [5] A practical study of the aerodynamic impact of wind turbine blade leading edge erosion
    Gaudern, N.
    SCIENCE OF MAKING TORQUE FROM WIND 2014 (TORQUE 2014), 2014, 524
  • [6] Research on Leading Edge Erosion and Aerodynamic Characteristics of Wind Turbine Blade Airfoil
    Guan, Xin
    Xie, Yuqi
    Wang, Shuaijie
    Li, Mingyang
    Wu, Shiwei
    FDMP-FLUID DYNAMICS & MATERIALS PROCESSING, 2024, 20 (09): : 2045 - 2058
  • [7] The effect of a leading edge erosion shield on the aerodynamic performance of a wind turbine blade
    Kyle, Ryan
    Wang, Fan
    Forbes, Brian
    WIND ENERGY, 2020, 23 (04) : 953 - 966
  • [8] Automated Quantification of Wind Turbine Blade Leading Edge Erosion from Field Images
    Aird, Jeanie A.
    Barthelmie, Rebecca J.
    Pryor, Sara C.
    ENERGIES, 2023, 16 (06)
  • [9] Wind turbine blade coating leading edge rain erosion model: Development and validation
    Eisenberg, Drew
    Laustsen, Steffen
    Stege, Jason
    WIND ENERGY, 2018, 21 (10) : 942 - 951
  • [10] Radar-derived precipitation climatology for wind turbine blade leading edge erosion
    Letson, Frederick
    Barthelmie, Rebecca J.
    Pryor, Sara C.
    WIND ENERGY SCIENCE, 2020, 5 (01) : 331 - 347