Regular fractal Dirac systems

被引:0
|
作者
Allahverdiev, Bilender P. [1 ,2 ]
Tuna, Huseyin [2 ,3 ]
Golmankhaneh, Alireza Khalili [4 ,5 ]
机构
[1] Khazar Univ, Dept Math, Baku AZ-1096, Azerbaijan
[2] UNEC Azerbaijan State Univ Econ, Res Ctr Econophys, Baku AZ-1001, Azerbaijan
[3] Burdur Mehmet Akif Ersoy Univ, Dept Math, TR-15030 Burdur, Turkiye
[4] Urmia BranchIslam Azad Univ, Dept Phys, Orumiyeh 63896, W Azerbaijan, Iran
[5] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye
关键词
Fractals; fractional differential equations; Dirac operator; REAL LINE; CALCULUS; SUBSETS;
D O I
10.1142/S0219887825500951
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the classical one-dimensional Dirac equation is considered under the framework of fractal calculus. First, the maximal and minimal operators corresponding to the problem are defined. Then the symmetric operator is obtained, the Green's function corresponding to the problem is constructed, and the eigenfunction expansion is given. Finally, some examples are given.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Trees with non-regular fractal boundary
    Yu, Jing Hu
    Ding, Yi Ming
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (08) : 1345 - 1350
  • [22] Spacing distributions for point processes on a regular fractal
    Sakhr, J
    Nieminen, JM
    PHYSICAL REVIEW E, 2006, 73 (03)
  • [23] Trees with Non-regular Fractal Boundary
    Jing Hu YU Department of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2008, 24 (08) : 1345 - 1350
  • [24] Trees with non-regular fractal boundary
    Jing Hu Yu
    Yi Ming Ding
    Acta Mathematica Sinica, English Series, 2008, 24
  • [25] Explicit formulae for the inverse problem for the regular Dirac operator
    Daskalov, VB
    Khristov, EK
    INVERSE PROBLEMS, 2000, 16 (01) : 247 - 258
  • [26] Self-Organisation in Spatial Systems-From Fractal Chaos to Regular Patterns and Vice Versa
    Banaszak, Michal
    Dziecielski, Michal
    Nijkamp, Peter
    Ratajczak, Waldemar
    PLOS ONE, 2015, 10 (09):
  • [27] ON COUPLED DIRAC SYSTEMS
    Gong, Wenmin
    Lu, Guangcun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (08) : 4329 - 4346
  • [28] On the Weyl-Dirac duality by means of a Cantorian fractal string
    Agop, M
    Ioammou, PD
    Nica, P
    PHYSICS LETTERS A, 2003, 314 (1-2) : 131 - 139
  • [29] LOW-FIELD MAGNETORESISTANCE IN A REGULAR FRACTAL MODEL
    ROSENTHAL, H
    BERGMAN, DJ
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (17): : 3629 - 3636
  • [30] Filtering a periodical component of a regular fractal using speckle
    Lehman, M
    DePasquale, L
    Patrignani, D
    Pombo, JL
    NEW IMAGE PROCESSING TECHNIQUES AND APPLICATIONS: ALGORITHMS, METHODS, AND COMPONENTS II, 1997, 3101 : 315 - 321