Location of dopant dictates proton-coupled electron transfer mechanism in vanadium-substituted polyoxotungstates

被引:0
|
作者
Lu, Zhou [1 ]
Dagar, Mamta [1 ]
Mckone, James R. [2 ]
Matson, Ellen M. [1 ]
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Univ Pittsburgh, Dept Chem & Petr Engn & Chem, Pittsburgh, PA 15260 USA
关键词
TRANSITION-METAL; NANOPARTICLES; SURFACE;
D O I
10.1039/d4sc08452g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heterometal doping in polyoxometalates (POMs) is a useful strategy to impart modular reactivity by leveraging control over the physicochemical properties of the resulting materials. The dopant can occupy different position(s) within the POM that may affect the mechanism and/or outcome of a desired reaction. In this work, we illustrate that substituting one tungsten atom with vanadium in [PVoutW11O40](4-) (PVoutW11) modulates the basicity of a bridging mu(2)-O2- ligand, increasing the strength of the O-H bond formed upon addition of the first proton-electron pair to the cluster by >20 kcal mol(-1) over that of its homometallic congener. The reaction of PVoutW11 with an H-atom donor of weaker bond dissociation free energy results in the successful isolation of singly reduced, singly protonated cluster 1e(-)/1H(+)-PVoutW11; kinetic analysis of the reaction of PVoutW11 with hydrazobenzene reveals that H-atom uptake proceeds via a concerted proton-electron transfer mechanism. By contrast, the centrally substituted [VinW12O40](3-) (VinW12) decouples the proton from electron transfer, leading to differential reactivity of 5,10-hydrophenazine to give the products of electron transfer. These results highlight that the proton-coupled electron transfer reactivity of heterometal-substituted metal oxides critically depends on the physical accessibility of dopants to the hydrogen donor.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Proton-Coupled Electron Transfer in Solution, Proteins, and Electrochemistry
    Hammes-Schiffer, Sharon
    Soudackov, Alexander V.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2008, 112 (45): : 14108 - 14123
  • [42] Proton-Coupled Electron Transfer with Photoexcited Metal Complexes
    Wenger, Oliver S.
    ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (07) : 1517 - 1526
  • [43] Theoretical Modeling of Electrochemical Proton-Coupled Electron Transfer
    Warburton, Robert E.
    Soudackov, Alexander, V
    Hammes-Schiffer, Sharon
    CHEMICAL REVIEWS, 2022, 122 (12) : 10599 - 10650
  • [44] Exploring proton-coupled electron transfer at multiple scales
    Sharon Hammes-Schiffer
    Nature Computational Science, 2023, 3 : 291 - 300
  • [45] Recent advances in bioinspired proton-coupled electron transfer
    Pannwitz, Andrea
    Wenger, Oliver S.
    DALTON TRANSACTIONS, 2019, 48 (18) : 5861 - 5868
  • [46] Proton-coupled electron transfer in soybean liopxygenase.
    Hatcher, ER
    Soudackov, AV
    Hammes-Schiffer, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U258 - U258
  • [47] Proton-coupled electron transfer (PCET) in thionocarbamate adsorption
    Guo, Shiqi
    Chernyshova, Irina, V
    Ponnurangam, Sathish
    Farinato, Raymond S.
    SURFACES AND INTERFACES, 2025, 62
  • [48] Proton-Coupled Electron Transfer Guidelines, Fair and Square
    Tyburski, Robin
    Liu, Tianfei
    Glover, Starla D.
    Hammarstrom, Leif
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2021, 143 (02) : 560 - 576
  • [49] Proton-coupled electron transfer dynamics in the alternative oxidase
    Beghiah, Adel
    Kim, Hyunho
    Saura, Patricia
    Young, Luke
    Moore, Anthony L.
    Kaila, Ville R. I.
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2022, 1863 : 28 - 28
  • [50] Proton-Coupled Electron Transfer in Artificial Photosynthetic Systems
    Mora, S. Jimena
    Odella, Emmanuel
    Moore, Gary F.
    Gust, Devens
    Moore, Thomas A.
    Moore, Ana L.
    ACCOUNTS OF CHEMICAL RESEARCH, 2018, 51 (02) : 445 - 453