Location of dopant dictates proton-coupled electron transfer mechanism in vanadium-substituted polyoxotungstates

被引:0
|
作者
Lu, Zhou [1 ]
Dagar, Mamta [1 ]
Mckone, James R. [2 ]
Matson, Ellen M. [1 ]
机构
[1] Univ Rochester, Dept Chem, Rochester, NY 14627 USA
[2] Univ Pittsburgh, Dept Chem & Petr Engn & Chem, Pittsburgh, PA 15260 USA
关键词
TRANSITION-METAL; NANOPARTICLES; SURFACE;
D O I
10.1039/d4sc08452g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Heterometal doping in polyoxometalates (POMs) is a useful strategy to impart modular reactivity by leveraging control over the physicochemical properties of the resulting materials. The dopant can occupy different position(s) within the POM that may affect the mechanism and/or outcome of a desired reaction. In this work, we illustrate that substituting one tungsten atom with vanadium in [PVoutW11O40](4-) (PVoutW11) modulates the basicity of a bridging mu(2)-O2- ligand, increasing the strength of the O-H bond formed upon addition of the first proton-electron pair to the cluster by >20 kcal mol(-1) over that of its homometallic congener. The reaction of PVoutW11 with an H-atom donor of weaker bond dissociation free energy results in the successful isolation of singly reduced, singly protonated cluster 1e(-)/1H(+)-PVoutW11; kinetic analysis of the reaction of PVoutW11 with hydrazobenzene reveals that H-atom uptake proceeds via a concerted proton-electron transfer mechanism. By contrast, the centrally substituted [VinW12O40](3-) (VinW12) decouples the proton from electron transfer, leading to differential reactivity of 5,10-hydrophenazine to give the products of electron transfer. These results highlight that the proton-coupled electron transfer reactivity of heterometal-substituted metal oxides critically depends on the physical accessibility of dopants to the hydrogen donor.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Heterometal Dopant Changes the Mechanism of Proton-Coupled Electron Transfer at the Polyoxovanadate-Alkoxide Surface
    Cooney, Shannon E.
    Walls, M. Rebecca A.
    Schreiber, Eric
    Brennessel, William W.
    Matson, Ellen M.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (04) : 2364 - 2369
  • [2] MECHANISM FOR PROTON-COUPLED ELECTRON-TRANSFER REACTIONS
    CUKIER, RI
    JOURNAL OF PHYSICAL CHEMISTRY, 1994, 98 (09): : 2377 - 2381
  • [3] Comment on the mechanism of proton-coupled electron transfer reactions
    Cho, SI
    Shin, S
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2000, 499 : 1 - 12
  • [4] Proton-coupled electron transfer
    Robert, Marc
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (07) : 7695 - 7695
  • [5] Proton-coupled electron transfer
    Cukier, RI
    Nocera, DG
    ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1998, 49 : 337 - 369
  • [6] Proton-Coupled Electron Transfer
    Weinberg, David R.
    Gagliardi, Christopher J.
    Hull, Jonathan F.
    Murphy, Christine Fecenko
    Kent, Caleb A.
    Westlake, Brittany C.
    Paul, Amit
    Ess, Daniel H.
    McCafferty, Dewey Granville
    Meyer, Thomas J.
    CHEMICAL REVIEWS, 2012, 112 (07) : 4016 - 4093
  • [7] Proton-coupled electron transfer
    Lebeau, E
    Meyer, TJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1998, 216 : U96 - U96
  • [8] Proton-coupled electron transfer
    Huynh, My Hang V.
    Meyer, Thomas J.
    CHEMICAL REVIEWS, 2007, 107 (11) : 5004 - 5064
  • [9] Insights into the Proton-Coupled Electron Transfer Mechanism in Fuel Cells
    Anwar, Muhammad Faisal
    Yu, Yong
    Rasool, Shahzad
    Akbar, Nabeela
    Huang, Jianbing
    Singh, Manish
    Gupta, Priyanka
    Wan, Shuo
    Huang, Qiu-An
    Yang, Fan
    Khalid, Muhammad
    Raza, Rizwan
    Wang, Jun
    Lu, Yuzheng
    Yun, Sining
    Zhu, Bin
    ACS APPLIED MATERIALS & INTERFACES, 2025, 17 (12) : 18371 - 18382
  • [10] Electrochemical proton-coupled electron transfer
    Hammes-Schiffer, Sharon
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242