Machine Learning-Driven Optimization of Spent Lithium Iron Phosphate Regeneration

被引:0
|
作者
Alyoubi, Mohammed [1 ,2 ]
Ali, Imtiaz [3 ]
Abdelkader, Amr M. [1 ]
机构
[1] Bournemouth Univ, Fac Sci & Technol, Dept Design & Engn, Poole BH12 5BB, Dorset, England
[2] King Abdulaziz Univ, Dept Chem & Mat Engn, Rabigh 21911, Saudi Arabia
[3] Prince Mohammad Bin Fahd Univ, Coll Engn, Dept Elect Engn, Al khobar 31952, Saudi Arabia
来源
关键词
spent lithium iron phosphate batteries; battery directregeneration; machine learning; predictive models; LI-ION BATTERIES; CATHODE MATERIAL; CHALLENGES;
D O I
10.1021/acssuschemeng.4c10415
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The increasing number of spent lithium-ion batteries demands efficient recovery or regeneration to address the associated environmental challenges. Solid-state direct regeneration of spent electrodes is a promising technique that has received significant attention recently. However, the process still requires considerable optimization before being commercially applied. This study leverages machine learning (ML) to develop highly accurate models that characterize the performance of regenerated lithium iron phosphate (LFP) cathodes through three case studies focused on direct regeneration methods. Five different ML models, including artificial neural network (ANN), advanced classification and regression trees (C&RT), boosted regression trees (BRT), support vector machine (SVM), and K-nearest neighbors (KNN), were trained using the collected data. The optimized regeneration conditions identified by the ANN model indicate that a 6.2% increase in specific discharge capacity can be achieved compared to the conditions determined experimentally. The results also showed a possible increase in cycle life, with higher capacity retention after 1147 cycles. These findings highlight the efficacy of ANN models in predicting and optimizing the performance of regenerated batteries, offering significant reductions in time and resources compared to traditional laboratory methods. Moreover, the concept demonstrated in this study shows strong potential for generalization to other battery materials, enabling the optimization of regeneration processes across a broader range of battery chemistry. While most research emphasizes using support vector machines (SVMs) for modeling newly manufactured batteries, this study demonstrates that ANN models provide superior accuracy for regenerated batteries, paving the way for more sustainable energy storage solutions.
引用
收藏
页码:3349 / 3361
页数:13
相关论文
共 50 条
  • [21] Advancing programmable metamaterials through machine learning-driven buckling strength optimization
    Lee, Sangryun
    Kwon, Junpyo
    Kim, Hyunjun
    Ritchie, Robert O.
    Gu, Grace X.
    CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE, 2024, 31
  • [22] Machine Learning-Driven Prediction of Vitamin D Deficiency Severity with Hybrid Optimization
    Bhimavarapu, Usharani
    Battineni, Gopi
    Chintalapudi, Nalini
    BIOENGINEERING-BASEL, 2025, 12 (02):
  • [23] Extending OpenMP for Machine Learning-Driven Adaptation
    Liao, Chunhua
    Wang, Anjia
    Georgakoudis, Giorgis
    de Supinski, Bronis R.
    Yan, Yonghong
    Beckingsale, David
    Gamblin, Todd
    ACCELERATOR PROGRAMMING USING DIRECTIVES, WACCPD 2021, 2022, 13194 : 49 - 69
  • [24] Machine learning-driven new material discovery
    Cai, Jiazhen
    Chu, Xuan
    Xu, Kun
    Li, Hongbo
    Wei, Jing
    NANOSCALE ADVANCES, 2020, 2 (08): : 3115 - 3130
  • [25] Machine Learning-Driven SERS Nanoendoscopy and Optophysiology
    Chisanga, Malama
    Masson, Jean-Francois
    ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, 2024, 17 : 313 - 338
  • [26] A Review on the Recovery of Lithium and Iron from Spent Lithium Iron Phosphate Batteries
    Jing, Chen
    Tran, Thanh Tuan
    Lee, Man Seung
    MINERAL PROCESSING AND EXTRACTIVE METALLURGY REVIEW, 2024, 45 (08): : 892 - 903
  • [27] Machine learning-driven optimization of gas diffusion layer microstructure for PEM fuel cells
    Omongos, Rashen Lou
    Galvez-Aranda, Diego E.
    Zanotto, Franco M.
    Vernes, Andras
    Franco, Alejandro A.
    JOURNAL OF POWER SOURCES, 2025, 625
  • [28] A machine learning-driven web application for sign language learning
    Orovwode, Hope
    Ibukun, Oduntan
    Abubakar, John Amanesi
    FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2024, 7
  • [29] Machine Learning-Driven Multiobjective Optimization: An Opportunity of Microfluidic Platforms Applied in Cancer Research
    Liu, Yi
    Li, Sijing
    Liu, Yaling
    CELLS, 2022, 11 (05)
  • [30] Machine learning-driven optimization for predicting compressive strength in fly ash geopolymer concrete
    Bypour, Maryam
    Yekrangnia, Mohammad
    Kioumarsi, Mahdi
    CLEANER ENGINEERING AND TECHNOLOGY, 2025, 25