Long-term stability of ultra-high-performance concrete with steel fibers in various environments

被引:0
|
作者
Liao, Gaoyu [1 ,2 ]
Xu, Lixiang [1 ]
Wu, Linmei [1 ]
机构
[1] Hunan Inst Sci & Technol, Coll Civil Engn & Architecture, Yueyang 414006, Peoples R China
[2] Univ Western Australia, Sch Engn, Mat & Struct Innovat Grp, Perth, WA, Australia
关键词
long-term stability; UHPC; compressive strength; sustainable development; underwater engineering; DRYING SHRINKAGE; CARBONATION; STRENGTH; SHAPE; SIZE;
D O I
10.1680/jadcr.24.00094
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Ultra-high performance concrete (UHPC) is renowned for its exceptional strength, durability, and structural integrity, offering sustainable solutions for construction. However, concerns persist regarding its long-term performance under various environments due to unhydrated cementitious particles. This study investigates the effect of steel fiber content on the long-term stability of UHPC in tap water, outdoor, and seawater environments over 720 days. Results show that adding 1%similar to 3% steel fiber increases compressive strength by 4.5%similar to 11.5%, 9.5%similar to 18.5%, and 0.4%similar to 3.5%, respectively. Steel fibers effectively reduce length changes, decreasing the rate by 26.3%, 57.0%, and 26.3%, respectively. Microstructure analysis confirms the formation of calcite and brucite in seawater, indicating chemical interactions between seawater components and cement-based materials. After 720 days in seawater, surface fibers exhibited corrosion, but internal fibers remained intact. This study provides insights into UHPC's long-term stability in diverse environments, critical for infrastructure durability and safety.
引用
收藏
页数:32
相关论文
共 50 条
  • [21] Static and dynamic mechanical properties of ultra-high-performance concrete (UHPC) by replacing steel fibers with plastic steel fibers
    Yu, Peng
    Ma, Weizhi
    Yun, Weijing
    Li, Wei
    JOURNAL OF BUILDING ENGINEERING, 2024, 98
  • [22] Effect of different shapes of steel fibers and palygorskite-nanofibers on performance of ultra-high-performance concrete
    Huang, Yingying
    Kong, Dewen
    Li, Yi
    Zhou, Shenghui
    Shu, Jing
    Wu, Bing
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [23] Spacing and bundling effects on rate-dependent pullout behavior of various steel fibers embedded in ultra-high-performance concrete
    Kim, Jae-Jin
    Yoo, Doo-Yeol
    ARCHIVES OF CIVIL AND MECHANICAL ENGINEERING, 2020, 20 (02)
  • [24] Investigation of long-term tension stiffening mechanism for ultra-high-performance fiber reinforced concrete (UHPFRC)
    Ul Islam, Mohammad Momeen
    CONSTRUCTION AND BUILDING MATERIALS, 2022, 321
  • [25] Analysis of the flexural properties of ultra-high-performance concrete consisting of hybrid straight steel fibers
    Jiao, Chujie
    Ta, Jide
    Niu, Yanfei
    Meng, Shaoqiang
    Chen, Xue-Fei
    He, Songsong
    Ma, Ruonan
    CASE STUDIES IN CONSTRUCTION MATERIALS, 2022, 17
  • [26] Flexural and Tensile Strength of Ultra-High-Performance Concrete with ZnPh-Treated Steel Fibers
    Zhu, Yanping
    Zhang, Yang
    Qu, Shaoqin
    Kumar, Aditya
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2020, 32 (10)
  • [27] Influence of embedment length on the pullout behavior of steel fibers from ultra-high-performance concrete
    Yoo, Doo-Yeol
    Je, Junho
    Choi, Hong-Joon
    Sukontasukkul, Piti
    MATERIALS LETTERS, 2020, 276
  • [28] Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers
    Yoo, Doo-Yeol
    Shin, Wonsik
    Chun, Booki
    CEMENT & CONCRETE COMPOSITES, 2020, 109
  • [29] A state of review on manufacturing and effectiveness of ultra-high-performance fiber reinforced concrete for long-term integrity of concrete structures
    Chen, Dongmei
    Chen, Yueshun
    Ma, Lu
    Sobuz, Md. Habibur Rahman
    Kabbo, Md. Kawsarul Islam
    Khan, Md. Munir Hayet
    ADVANCES IN CONCRETE CONSTRUCTION, 2024, 17 (05) : 293 - 310
  • [30] Corrosion effect on tensile behavior of ultra-high-performance concrete reinforced with straight steel fibers
    Yoo, Doo-Yeol
    Shin, Wonsik
    Chun, Booki
    Cement and Concrete Composites, 2020, 109