OCSCNet-Tracker: Hyperspectral Video Tracker Based on Octave Convolution and Spatial-Spectral Capsule Network

被引:0
|
作者
Zhao, Dong [1 ,2 ]
Wang, Mengyuan [1 ,2 ]
Huang, Kunpeng [1 ]
Zhong, Weixiang [1 ,2 ]
Arun, Pattathal V. [3 ]
Li, Yunpeng [1 ,2 ]
Asano, Yuta [4 ]
Wu, Li [1 ,2 ]
Zhou, Huixin [5 ]
机构
[1] Wuxi Univ, Jiangsu Prov Engn Res Ctr Photon Devices & Syst In, Wuxi 214105, Peoples R China
[2] Nanjing Univ Informat Sci & Technol, Sch Elect & Informat Engn, Nanjing 210044, Peoples R China
[3] Indian Inst Informat Technol, Sch Comp Sci & Engn Grp, Sri City 441108, India
[4] Natl Inst Informat, Digital Content & Media Sci Res Div, Tokyo 1018430, Japan
[5] Xidian Univ, Sch Phys, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral video tracker; capsule network; spatial-spectral feature extraction;
D O I
10.3390/rs17040693
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In the field of hyperspectral video tracking (HVT), occclusion poses a challenging issue without a satisfactory solution. To address this challenge, the current study explores the application of capsule networks in HVT and proposes an approach based on octave convolution and a spatial-spectral capsule network (OCSCNet). Specifically, the spatial-spectral octave convolution module is designed to learn features from hyperspectral images by integrating spatial and spectral information. Hence, unlike traditional convolution, which is limited to learning spatial features, the proposed strategy also focuses on learning and modeling the spectral features. The proposed spatial-spectral capsule network integrates spectral information to distinguish among underlying capsule categories based on their spectral similarity. The approach enhances separability and establishes relationships between different components and targets at various scales. Finally, a confidence threshold judgment module utilizes the information from the initial and adjacent frames for relocating the lost target. Experiments conducted on the HOT2023 dataset illustrate that the proposed model outperforms state-of-the-art methods, achieving a success rate of 65.2% and a precision of 89.3%. In addition, extensive experimental results and visualizations further demonstrate the effectiveness and interpretability of the proposed OCSCNet.
引用
收藏
页数:24
相关论文
共 50 条
  • [41] Spatial-Spectral Oriented Triple Attention Network for Hyperspectral Image Denoising
    Xiao, Zilong
    Qin, Hanlin
    Yang, Shuowen
    Yan, Xiang
    Zhou, Huixin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 17
  • [42] SSCAN: A Spatial-Spectral Cross Attention Network for Hyperspectral Image Denoising
    Wang, Zhiqiang
    Shao, Zhenfeng
    Huang, Xiao
    Wang, Jiaming
    Lu, Tao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [43] A dense spatial-spectral attention network for hyperspectral image band selection
    Zhang, Hui
    Lan, Jinhui
    Guo, Yunkang
    REMOTE SENSING LETTERS, 2021, 12 (10) : 1025 - 1037
  • [44] SPATIAL-SPECTRAL CONVOLUTIONAL SPARSE NEURAL NETWORK FOR HYPERSPECTRAL IMAGE DENOISING
    Xiong, Fengchao
    Ye, Minchao
    Zhou, Jun
    Qian, Yuntao
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1225 - 1228
  • [45] Lightweight omni-dimensional dynamic convolution with spatial-spectral self-attention network for hyperspectral image classification
    Liu, Yi
    Peng, Xufeng
    Zhang, Yanjun
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (18) : 6572 - 6600
  • [46] ESSINet: Efficient Spatial-Spectral Interaction Network for Hyperspectral Image Classification
    Lv, Zhuwang
    Dong, Xue-Mei
    Peng, Jiangtao
    Sun, Weiwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] SPATIAL-SPECTRAL COMBINATION CONVOLUTIONAL NEURAL NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Pu, Chunyu
    Huang, Hong
    Li, Zhengying
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2037 - 2040
  • [48] Spatial-Spectral Split Attention Residual Network for Hyperspectral Image Classification
    Shu, Zhenqiu
    Liu, Zigao
    Zhou, Jun
    Tang, Songze
    Yu, Zhengtao
    Wu, Xiao-Jun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 419 - 430
  • [49] Spatial-Spectral Joint Network for Cholangiocarcinoma Microscopic Hyperspectral Image Classification
    Huang X.
    Zhang X.
    Zhang M.
    Lyu M.
    Li W.
    Journal of Beijing Institute of Technology (English Edition), 2023, 32 (05): : 586 - 599
  • [50] Hybrid spatial-spectral generative adversarial network for hyperspectral image classification
    Ma, Chao
    Wan, Minjie
    Kong, Xiaofang
    Zhang, Xiaojie
    Chen, Qian
    Gu, Guohua
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2023, 40 (03) : 538 - 548