More on r-cross t-intersecting families for vector spaces

被引:0
|
作者
Yao, Tian [1 ]
Liu, Dehai [2 ]
Wang, Kaishun [2 ]
机构
[1] Henan Inst Sci & Technol, Sch Math Sci, Xinxiang 453003, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Lab Math & Complex Syst, Minist Educ, Beijing 100875, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划; 北京市自然科学基金;
关键词
r-cross t-intersecting families; Vector spaces; Hilton-Milner theorem; SYSTEMS; THEOREMS;
D O I
10.1016/j.jcta.2025.106031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let V be a finite dimensional vector space over a finite field. Suppose that F-1, F-2, ... ,F-r are r-cross t-intersecting families of k-subspaces of V. In this paper, we determine the extremal structure when Pi (R)(i=1) |F-i| is maximum under the condition that dim(boolean AND(F is an element of Fi) F) < t for each i. (c) 2025 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] On t-intersecting families of signed sets and permutations
    Borg, Peter
    DISCRETE MATHEMATICS, 2009, 309 (10) : 3310 - 3317
  • [22] A universal bound concerning t-intersecting families
    Frankl, P.
    ACTA MATHEMATICA HUNGARICA, 2023, 171 (1) : 200 - 202
  • [23] An improved universal bound for t-intersecting families
    Frankl, Peter
    EUROPEAN JOURNAL OF COMBINATORICS, 2020, 87
  • [24] Extremal t-intersecting families for direct products
    Yao, Tian
    Lv, Benjian
    Wang, Kaishun
    DISCRETE MATHEMATICS, 2022, 345 (11)
  • [25] A universal bound concerning t-intersecting families
    P. Frankl
    Acta Mathematica Hungarica, 2023, 171 : 200 - 202
  • [26] A Note on Distinct Differences in t-Intersecting Families
    Bhanja, Jagannath
    Goswami, Sayan
    GRAPHS AND COMBINATORICS, 2024, 40 (04)
  • [27] The Maximum Sum of Sizes of Non-Empty Cross t-Intersecting Families
    Li, Shuang
    Liu, Dehai
    Song, Deping
    Yao, Tian
    GRAPHS AND COMBINATORICS, 2024, 40 (05)
  • [29] Extremal t-intersecting sub-families of hereditary families
    Borg, Peter
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 79 : 167 - 185
  • [30] Stabilities for Non-Uniform t-Intersecting Families
    Li, Yongtao
    Wu, Biao
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):