TOPOLOGICAL HOCHSCHILD HOMOLOGY AND ZETA VALUES

被引:0
|
作者
Morin, Baptiste [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, Ctr Natl Rech Sci, UMR 5251, Talence, France
关键词
D O I
10.1215/00127094-2023-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using work of Antieau and Bhatt, Morrow, and Scholze, we define a filtration on topological Hochschild homology and its variants TPTP and TC- of quasi-lci rings with bounded torsion. Then we compute the graded pieces of this filtration in terms of Hodge completed derived de Rham cohomology relative to the base ring ZZ. We denote the cofiber of the canonical map from gr(n)TC-(-)to gr(n)TP(-) by L Omega(<n)(-/S)[2n]. Let X be a regular connected scheme of dimension d proper over Spec(Z), and let n is an element of Z be an arbitrary integer. Together with Weil-& eacute;tale cohomology with compact support R Gamma(W,c)(X,Z(n)), the complex L Omega(<n)(X/S) is expected to give the zeta value +/-zeta(& lowast;)(X,n) on the nose. Following Deninger, we define the zeta function zeta(XR,s) of the R-scheme X-R in terms of zeta-regularized determinants. Our main result is a general special value formula for +/-zeta(& lowast;)(X-R,n) in terms of the Bloch conductor A(X)(d/2-n) and the determinants of R Gamma(X-R,X-W,Z(n)), L Omega(<n)(X/S), and L Omega(<d-n)(X/S). In particular, the passage from the base ring Z to the base E-infinity-ring S in derived de Rham cohomology is precisely quantified by the factorials in zeta(& lowast;)(X-R,n).
引用
收藏
页码:2619 / 2685
页数:67
相关论文
共 50 条
  • [21] Extension DGAs and topological Hochschild homology
    Bayindir, Haldun Ozgur
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2023, 23 (02): : 895 - 932
  • [22] Topological Hochschild homology and the condition of Hochschild-Kostant-Rosenberg
    Larsen, M
    Lindenstrauss, A
    COMMUNICATIONS IN ALGEBRA, 2001, 29 (04) : 1627 - 1638
  • [23] Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras
    Ginot, Gregory
    Tradler, Thomas
    Zeinalian, Mahmoud
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 326 (03) : 635 - 686
  • [24] Higher Hochschild Homology, Topological Chiral Homology and Factorization Algebras
    Grégory Ginot
    Thomas Tradler
    Mahmoud Zeinalian
    Communications in Mathematical Physics, 2014, 326 : 635 - 686
  • [25] On higher topological Hochschild homology of rings of integers
    Dundas, Bjorn Ian
    Lindenstrauss, Ayelet
    Richter, Birgit
    MATHEMATICAL RESEARCH LETTERS, 2018, 25 (02) : 489 - 507
  • [26] Topological Hochschild homology and the Bass trace conjecture
    Berrick, A. J.
    Hesselholt, Lars
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2015, 704 : 169 - 185
  • [27] Topological Hochschild homology and the homotopy descent problem
    Tsalidis, S
    TOPOLOGY, 1998, 37 (04) : 913 - 934
  • [28] A multiplicative comparison of Mac Lane homology and topological Hochschild homology
    Horel, Geoffroy
    Ramzi, Maxime
    ANNALS OF K-THEORY, 2021, 6 (03) : 571 - 605
  • [29] Cyclotomic structure in the topological Hochschild homology of DX
    Malkiewich, Cary
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2017, 17 (04): : 2307 - 2356
  • [30] On the Brun spectral sequence for topological Hochschild homology
    Hoening, Eva
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2020, 20 (02): : 817 - 863