TOPOLOGICAL HOCHSCHILD HOMOLOGY AND ZETA VALUES

被引:0
|
作者
Morin, Baptiste [1 ]
机构
[1] Univ Bordeaux, Inst Math Bordeaux, Ctr Natl Rech Sci, UMR 5251, Talence, France
关键词
D O I
10.1215/00127094-2023-0067
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using work of Antieau and Bhatt, Morrow, and Scholze, we define a filtration on topological Hochschild homology and its variants TPTP and TC- of quasi-lci rings with bounded torsion. Then we compute the graded pieces of this filtration in terms of Hodge completed derived de Rham cohomology relative to the base ring ZZ. We denote the cofiber of the canonical map from gr(n)TC-(-)to gr(n)TP(-) by L Omega(<n)(-/S)[2n]. Let X be a regular connected scheme of dimension d proper over Spec(Z), and let n is an element of Z be an arbitrary integer. Together with Weil-& eacute;tale cohomology with compact support R Gamma(W,c)(X,Z(n)), the complex L Omega(<n)(X/S) is expected to give the zeta value +/-zeta(& lowast;)(X,n) on the nose. Following Deninger, we define the zeta function zeta(XR,s) of the R-scheme X-R in terms of zeta-regularized determinants. Our main result is a general special value formula for +/-zeta(& lowast;)(X-R,n) in terms of the Bloch conductor A(X)(d/2-n) and the determinants of R Gamma(X-R,X-W,Z(n)), L Omega(<n)(X/S), and L Omega(<d-n)(X/S). In particular, the passage from the base ring Z to the base E-infinity-ring S in derived de Rham cohomology is precisely quantified by the factorials in zeta(& lowast;)(X-R,n).
引用
收藏
页码:2619 / 2685
页数:67
相关论文
共 50 条
  • [1] Topological Hochschild homology and the Hasse-Weil zeta function
    Hesselholt, Lars
    ALPINE BOUQUET OF ALGEBRAIC TOPOLOGY, 2018, 708 : 157 - 180
  • [2] Topological Hochschild homology
    Schwanzl, R
    Vogt, RM
    Waldhausen, F
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2000, 62 : 345 - 356
  • [3] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    PIRASHVILI, T
    WALDHAUSEN, F
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 82 (01) : 81 - 98
  • [4] STABLE TOPOLOGICAL CYCLIC HOMOLOGY IS TOPOLOGICAL HOCHSCHILD HOMOLOGY
    HESSELHOLT, L
    ASTERISQUE, 1994, (226) : 175 - 192
  • [5] MACLANE HOMOLOGY AND TOPOLOGICAL HOCHSCHILD HOMOLOGY
    FIEDOROWICZ, Z
    PIRASHVILI, T
    SCHWANZL, R
    VOGT, R
    WALDHAUSEN, F
    MATHEMATISCHE ANNALEN, 1995, 303 (01) : 149 - 164
  • [6] Real topological Hochschild homology
    Dotto, Emanuele
    Moi, Kristian
    Patchkoria, Irakli
    Reeh, Sune Precht
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2021, 23 (01) : 63 - 152
  • [7] TOPOLOGICAL HOCHSCHILD HOMOLOGY OF AS A MODULE
    Basu, Samik
    HOMOLOGY HOMOTOPY AND APPLICATIONS, 2017, 19 (01) : 253 - 280
  • [9] Localization theorems in topological Hochschild homology and topological cyclic homology
    Blumberg, Andrew J.
    Mandell, Michael A.
    GEOMETRY & TOPOLOGY, 2012, 16 (02) : 1053 - 1120
  • [10] Character values and Hochschild homology
    Bezrukavnikov, Roman
    Kazhdan, David
    REPRESENTATIONS OF REDUCTIVE GROUPS, 2019, 101 : 1 - 29