Proximity equitability Colouring in graphs

被引:0
|
作者
Neelakantan, S. [1 ]
Swaminathan, V. [2 ]
Sundareswaran, R. [3 ]
Venkatesh, K. A. [4 ]
机构
[1] Wayfair, Boston, MA 02116 USA
[2] Saraswathi Narayanan Coll, Ramanujan Res Ctr Math, Madurai, India
[3] Sri Sivasubramaniya Nadar Coll Engn, Dept Math, Chennai, India
[4] Chanakya Univ, Sch Math & Nat Sci, Bangalore, India
关键词
Maximum Degree; Shortest distance; Proximity Equitable Coloring;
D O I
10.5269/bspm.63131
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple, finite, undirected and connected graph. Let S be the set of all vertices of maximum degree in G. The proximity of a vertex u is an element of V (G) is the shortest distance of u from S. Two vertices of G are said to be proximity equitable if their proximity difference is at most 1. In this paper, a study of proximity equitable proper colouring is initiated.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Edge-colouring and total-colouring chordless graphs
    Machado, Raphael C. S.
    de Figueiredo, Celina M. H.
    Trotignon, Nicolas
    DISCRETE MATHEMATICS, 2013, 313 (14) : 1547 - 1552
  • [42] Signed colouring and list colouring of k-chromatic graphs
    Kim, Ringi
    Kim, Seog-Jin
    Zhu, Xuding
    JOURNAL OF GRAPH THEORY, 2022, 99 (04) : 637 - 650
  • [43] Star colouring of bounded degree graphs and regular graphs
    Shalu, M. A.
    Antony, Cyriac
    DISCRETE MATHEMATICS, 2022, 345 (06)
  • [44] Fall colouring of bipartite graphs and cartesian products of graphs
    Laskar, Renu
    Lyle, Jeremy
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (02) : 330 - 338
  • [45] Acyclic edge colouring of plane graphs
    Fiedorowicz, Anna
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (10-11) : 1513 - 1523
  • [46] Colouring graphs with forbidden bipartite subgraphs
    Anderson, James
    Bernshteyn, Anton
    Dhawan, Abhishek
    COMBINATORICS PROBABILITY AND COMPUTING, 2023, 32 (01) : 45 - 67
  • [47] Edge-colouring of join graphs
    De Simone, C
    de Mello, CP
    THEORETICAL COMPUTER SCIENCE, 2006, 355 (03) : 364 - 370
  • [48] Strong edge colouring of subcubic graphs
    Hocquard, Herve
    Valicov, Petru
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (15) : 1650 - 1657
  • [49] IMPROVED BOUNDS FOR COLOURING CIRCLE GRAPHS
    Davies, James
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2022, 150 (12) : 5121 - 5135
  • [50] Acyclic edge colouring of outerplanar graphs
    Muthu, Rahul
    Narayanan, N.
    Subramanian, C. R.
    ALGORITHMIC ASPECTS IN INFORMATION AND MANAGEMENT, PROCEEDINGS, 2007, 4508 : 144 - +