A heteroscedastic regression model with the generalized normal distribution

被引:1
|
作者
Eskin, Emine Nur [1 ]
Dogru, Fatma Zehra [1 ]
机构
[1] Giresun Univ, Dept Stat, TR-28100 Giresun, Turkiye
关键词
GN; Joint Location And Scale Model; Laplace Distribution; ML; Normal Distribution; SCALE-PARAMETERS; VARIANCE HETEROGENEITY; MAXIMUM-LIKELIHOOD; VARIABLE SELECTION; SKEWNESS MODELS; JOINT LOCATION; ROBUST;
D O I
10.14744/sigma.2024.00114114
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In regression analysis, joint modeling mean and dispersion is an essential tool in absence of the variance homogeneity. Moreover, it is known in the literature that the generalized normal (GN) distribution has some features that provide flexibility in modeling thanks to its shape parameter. This paper proposes a joint location and scale model of the GN distribution for modeling location and scale in the presence of heteroscedasticity. We provide maximum likelihood (ML) estimators for the parameters of the proposed model. We also give an estimation procedure to estimate all parameters simultaneously. For the application, some simulation study scenarios and a real-life example are carried out to prove the estimation performance of the proposed model.
引用
收藏
页码:1480 / 1489
页数:10
相关论文
共 50 条
  • [41] On a Robust Estimator in Heteroscedastic Regression Model in the Presence of Outliers
    Midi, Habshah
    Rana, Sohel
    Imon, A. H. M. R.
    WORLD CONGRESS ON ENGINEERING - WCE 2013, VOL I, 2013, : 280 - +
  • [42] Detection of the jump points of a heteroscedastic regression model by wavelets
    Zhao Yanmeng
    Li Yuan
    Acta Mathematicae Applicatae Sinica, 2000, 16 (4) : 420 - 429
  • [43] On the limit in the equivalence between heteroscedastic regression and filtering model
    Efromovich, S
    STATISTICS & PROBABILITY LETTERS, 2003, 63 (03) : 239 - 242
  • [44] Active Heteroscedastic Regression
    Chaudhuri, Kamalika
    Jain, Prateek
    Natarajan, Nagarajan
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [45] A heteroscedastic generalized extreme value discrete choice model
    Zeng, LC
    SOCIOLOGICAL METHODS & RESEARCH, 2000, 29 (01) : 118 - 144
  • [46] Discrete generalized half-normal distribution and its applications in quantile regression
    Gallardo, Diego, I
    Gomez-Deniz, Emilio
    Gomez, Hector W.
    SORT-STATISTICS AND OPERATIONS RESEARCH TRANSACTIONS, 2020, 44 (02) : 265 - 283
  • [47] A Flexible Extension of Generalized Half-Normal Distribution: Characterizations and Regression Models
    Altun, Emrah
    Yousof, Haitham M.
    Hamedani, G. G.
    INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS, 2018, 57 (03): : 27 - 49
  • [48] Heteroscedastic mixture transition distribution (HMTD) model
    Wang, Hongjun
    Tian, Zheng
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2008, 28 (1-2) : 207 - 224
  • [49] The Log-Beta Generalized Half-Normal Regression Model
    Pescim, Rodrigo R.
    Ortega, Edwin M. M.
    Cordeiro, Gauss M.
    Demtrio, Clarice G. B.
    Hamedani, G. G.
    JOURNAL OF STATISTICAL THEORY AND APPLICATIONS, 2013, 12 (04): : 330 - 347
  • [50] The Log-Beta Generalized Half-Normal Regression Model
    Rodrigo R. Pescim
    Edwin M. M. Ortega
    Gauss M. Cordeiro
    Clarice G. B. Demtriod
    G. G. Hamedani
    Journal of Statistical Theory and Applications, 2013, 12 (4): : 330 - 347