TIMOSHENKO SYSTEM WITH INTERNAL DISSIPATION OF FRACTIONAL DERIVATIVE TYPE

被引:0
|
作者
de Jesus, Rafael Oliveira [1 ,3 ]
Raposo, Carlos Alberto [2 ]
Ribeiro, Joilson Oliveira [3 ]
Villagran, Octavio Vera [4 ]
机构
[1] Univ Pernambuco, Dept Math, BR-56328900 Petrolina, PE, Brazil
[2] Fed Univ Para, Fac Math, BR-68721000 Salinopolis, PA, Brazil
[3] Univ Fed Bahia, Dept Math, BR-40170110 Salvador, BA, Brazil
[4] Univ Tarapaca, Dept Math, Arica, Chile
来源
关键词
Timoshenko system; well-posedness; polynomial stability; frac- tional derivative type damping; TRANSVERSE VIBRATIONS; STABILITY; EQUATIONS; CALCULUS;
D O I
10.11948/20240289
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This manuscript deals with the well-posedness and asymptotic behavior of the Timoshenko system with internal dissipation of fractional derivative type. We use semigroup theory. The existence and uniqueness of the solution are obtained by applying the Lumer-Phillips Theorem. We present two results for the asymptotic behavior: strong stability of the C-0-semigroup associated with the system using the Arendt-Batty and Lyubich-Vu's general criterion and the polynomial stability applying the Borichev-Tomilov's theorem. This results expand the understanding of the asymptotic behavior of Timoshenko systems with fractional internal dissipation, providing clear criteria for both strong and polynomial stability.
引用
收藏
页码:1146 / 1169
页数:24
相关论文
共 50 条
  • [41] Dynamics of a middle ear with fractional type of dissipation
    Kovincic, Nemanja I.
    Spasic, Dragan T.
    NONLINEAR DYNAMICS, 2016, 85 (04) : 2369 - 2388
  • [42] ON THE FRACTIONAL q-DERIVATIVE OF CAPUTO TYPE
    Stankovic, Miomir S. l
    Rajkovic, Predrag M.
    Marinkovic, Sladjana D.
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (02): : 197 - 204
  • [43] Dynamics of a viscoelastic rod of fractional derivative type
    Atanackovic, TM
    Stankovic, B
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2002, 82 (06): : 377 - 386
  • [44] A NEW DEFINITION OF A FRACTIONAL DERIVATIVE OF LOCAL TYPE
    Guzman, Paulo M.
    Langton, Guillermo
    Lugo Motta Bittencurt, Luciano M.
    Medina, Julian
    Napoles Valdes, Juan E.
    JOURNAL OF MATHEMATICAL ANALYSIS, 2018, 9 (02): : 88 - 98
  • [45] Quasi-static and dynamical analysis for viscoelastic Timoshenko beam with fractional derivative constitutive relation
    Zheng-You Z.
    Gen-Guo L.
    Chang-Jun C.
    Applied Mathematics and Mechanics (English Edition), 2002, 23 (01) : 1 - 12
  • [46] Steady-State Harmonic Vibrations of Viscoelastic Timoshenko Beams with Fractional Derivative Damping Models
    Klanner, Michael
    Prem, Marcel S.
    Ellermann, Katrin
    APPLIED MECHANICS, 2021, 2 (04): : 797 - 819
  • [47] PROPERTY OF GROWTH DETERMINED BY SPECTRUM OF OPERATOR ASSOCIATED WITH THE TIMOSHENKO SYSTEM WITH WEAKLY DISSIPATION
    Raposo, C. A.
    Rivera, J. E. M.
    Alves, R. R.
    DIFFERENTIAL EQUATIONS & APPLICATIONS, 2015, 7 (03): : 385 - 400
  • [48] Exponential stability in a Timoshenko system of type III
    Qin, Yuming
    Li, Zhuang
    APPLICABLE ANALYSIS, 2022, 101 (17) : 6303 - 6320
  • [49] Internal boundary layer in a singularly perturbed problem of fractional derivative
    Kalimbetov, B. T.
    Temirbekov, A. N.
    Yeskarayeva, B. I.
    BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 100 (04): : 92 - 100
  • [50] Rapid Stabilization of Timoshenko Beam System with the Internal Delay Control
    Xie, Yaru
    Chen, Yuwen
    ACTA APPLICANDAE MATHEMATICAE, 2023, 186 (01)