Anomalous thermal transport in Eshelby twisted van der Waals nanowires

被引:0
|
作者
Liu, Yin [1 ]
Jin, Lei [2 ,3 ]
Pandey, Tribhuwan [4 ]
Sun, Haoye [2 ]
Liu, Yuzi [5 ]
Li, Xun [6 ]
Rodriguez, Alejandro [7 ]
Wang, Yueyin [1 ]
Zhou, Tao [5 ]
Chen, Rui [2 ]
Sun, Yongwen [7 ]
Yang, Yang [8 ]
Chrzan, Daryl C. [2 ,3 ]
Lindsay, Lucas [6 ]
Wu, Junqiao [2 ,3 ]
Yao, Jie [2 ,3 ]
机构
[1] North Carolina State Univ, Dept Mat Sci & Engn, Raleigh, NC 27606 USA
[2] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
[4] Univ Antwerp, Dept Phys, Antwerp, Belgium
[5] Argonne Natl Lab, Nanosci & Technol Div, Ctr Nanoscale Mat, Lemont, IL USA
[6] Oak Ridge Natl Lab, Mat Sci & Technol Div, Oak Ridge, TN 37830 USA
[7] Univ South Carolina, Dept Mech Engn, Columbia, SC USA
[8] Penn State Univ, Mat Res Inst, Dept Engn Sci & Mech, University Pk, PA USA
基金
美国国家科学基金会;
关键词
CONDUCTIVITY; PERFORMANCE; STACKING; COMPLEX; GROWTH; MOS2;
D O I
10.1038/s41563-024-02108-3
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Dislocations in van der Waals (vdW) layered nanomaterials induce strain and structural changes that substantially impact thermal transport. Understanding these effects could enable the manipulation of dislocations for improved thermoelectric and optoelectronic applications, but experimental insights remain limited. In this study, we use synthetic Eshelby twisted vdW GeS nanowires (NWs) with single screw dislocations as a model system to explore the interplay between dislocation-induced structural modifications and lattice thermal conductivity. Our measurements reveal a monoclinic structure stabilized by the dislocation, leading to a substantial drop in thermal conductivity for larger-diameter NWs (70% at room temperature), supported by first-principles calculations. Interestingly, we also find an anomalous enhancement of thermal conductivity with decreasing diameter in twisted NWs, contrary to typical trends in non-twisted GeS NWs. This is attributed to increased conductivity near the NW cores due to compressive strain around the central dislocations, and aligns with a density-functional-theory-informed core-shell model. Our results highlight the critical role of dislocations in thermal conduction, providing fundamental insights for defect and strain engineering in advanced thermal applications.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Thermal transport in finite-size van der Waals materials: Modeling and Simulations
    Barbalinardo, Giuseppe
    Sievers, Charles A.
    Chen, Shunda
    Donadio, Davide
    2018 IEEE 18TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2018,
  • [42] Phonon thermal transport in a graphene/MoSe2 van der Waals heterobilayer
    Hong, Yang
    Ju, Ming Gang
    Zhang, Jingchao
    Zeng, Xiao Cheng
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2018, 20 (04) : 2637 - 2645
  • [43] Photonic transport in a graphene van der Waals homojunction
    Shen, Lian
    Lin, Xiao
    Zhang, Runren
    Liu, Xu
    Lin, Shisheng
    Chen, Hongsheng
    JOURNAL OF MATERIALS CHEMISTRY C, 2015, 3 (41) : 10879 - 10885
  • [44] VAN DER WAALS THEORY OF TRANSPORT IN DENSE FLUIDS
    DYMOND, JH
    ALDER, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1966, 45 (06): : 2061 - &
  • [45] Anisotropic phonon transport in van der Waals nanostructures
    Tao, Yi
    Cai, Shuang
    Wu, Chao
    Wei, Zhiyong
    Lu, Xi
    Zhang, Yan
    Chen, Yunfei
    PHYSICS LETTERS A, 2022, 427
  • [46] Coherent magnon transport in a van der Waals antiferromagnet
    Chen, Jilei
    Yuan, Rundong
    Yu, Kanglin
    Wang, Xiaoyu
    Sheng, Lutong
    Wang, Jinlong
    Hua, Chensong
    Yu, Weichao
    Xiao, Jiang
    Liu, Song
    Yu, Dapeng
    Ansermet, Jean-Philippe
    Wang, Zhe
    Yu, Haiming
    APPLIED PHYSICS REVIEWS, 2025, 12 (01):
  • [47] Electron transport across the Van der Waals interfaces
    Kim, Philip
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [48] Van der Waals model of thermal dusty plasma
    Asinovskij, E.I.
    Olejnikova, E.N.
    Khomkin, A.L.
    Teplofizika Vysokikh Temperatur, 2001, 39 (06): : 853 - 858
  • [49] Van der Waals Model of Thermal Dusty Plasma
    E. I. Asinovskii
    E. N. Oleinikova
    A. L. Khomkin
    High Temperature, 2001, 39 : 789 - 793
  • [50] Extremely anisotropic van der Waals thermal conductors
    Shi En Kim
    Fauzia Mujid
    Akash Rai
    Fredrik Eriksson
    Joonki Suh
    Preeti Poddar
    Ariana Ray
    Chibeom Park
    Erik Fransson
    Yu Zhong
    David A. Muller
    Paul Erhart
    David G. Cahill
    Jiwoong Park
    Nature, 2021, 597 : 660 - 665