A hybrid approach for intrusion detection in vehicular networks using feature selection and dimensionality reduction with optimized deep learning

被引:0
|
作者
Hassan, Fayaz [1 ]
Syed, Zafi Sherhan [1 ]
Memon, Aftab Ahmed [1 ]
Alqahtany, Saad Said [2 ]
Ahmed, Nadeem [1 ]
Al Reshan, Mana Saleh [3 ,4 ]
Asiri, Yousef [5 ]
Shaikh, Asadullah [3 ,4 ]
机构
[1] Mehran Univ Engn & Technol, Dept Telecommun Engn, Jamshoro, Pakistan
[2] Islamic Univ Madinah, Fac Comp & Informat Syst, Madinah, Saudi Arabia
[3] Najran Univ, Dept Informat Syst, Coll Comp Sci & Informat Syst, Najran, Saudi Arabia
[4] Najran Univ, Coll Comp Sci & Informat Syst, Emerging Technol Res Lab ETRL, Najran, Saudi Arabia
[5] Najran Univ, Dept Comp Sci, Coll Comp Sci & Informat Syst, Najran, Saudi Arabia
来源
PLOS ONE | 2025年 / 20卷 / 02期
关键词
ATTACKS; MODEL;
D O I
10.1371/journal.pone.0312752
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Autonomous transportation systems have the potential to greatly impact the way we travel. A vital aspect of these systems is their connectivity, facilitated by intelligent transport applications. However, the safety ensured by the vehicular network can be easily compromised by malicious traffic with the exponential growth of IoT devices. One aspect is malicious traffic identification in Vehicular networks. We proposed a hybrid approach uses automated feature engineering via correlation-based feature selection (CFS) and principal component analysis (PCA)-based dimensionality reduction to reduce feature matrix size before a series of dense layers are used for classification. The intended use of CFS and PCA in the machine learning pipeline serves two folds benefit, first is that the resultant feature matrix contains attributes that are most useful for recognizing malicious traffic, and second that after CFS and PCA, the feature matrix has a smaller dimensionality which in turn means that smaller number of weights need to be trained for the dense layers (connections are required for the dense layers) which resulting in smaller model size. Furthermore, we show the impact of post-training model weight quantization to further reduce the model size. Results demonstrate the effectiveness of feature engineering which improves the classification f1score from 96.48% to 98.43%. It also reduces the model size from 28.09 KB to 20.34 KB thus optimizing the model in terms of both classification performance and model size. Post-training quantization further optimizes the model size to 9 KB. The experimental results using CICIDS2017 dataset demonstrate that proposed hybrid model performs well not only in terms of classification performance but also yields trained models that have a low parameter count and model size. Thus, the proposed low-complexity models can be used for intrusion detection in VANET scenario.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Hybrid intrusion detection models based on GWO optimized deep learning
    Elsaid, Shaimaa Ahmed
    Shehab, Esraa
    Mattar, Ahmed M.
    Azar, Ahmad Taher
    Hameed, Ibrahim A.
    DISCOVER APPLIED SCIENCES, 2024, 6 (10)
  • [22] Intrusion Detection Using a New Hybrid Feature Selection Model
    Mohammad, Adel Hamdan
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 30 (01): : 65 - 80
  • [23] Network intrusion detection: An optimized deep learning approach using big data analytics
    Mary, D. Suja
    Dhas, L. Jaya Singh
    Deepa, A. R.
    Chaurasia, Mousmi Ajay
    Sheela, C. Jaspin Jeba
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [24] Lightweight Intrusion Detection Based on Hybrid Feature Selection Machine Learning
    Xia, Guoxin
    Zhao, Yanqiao
    Han, Chaohui
    Zhao, Xiaosong
    Zhang, Lei
    39TH YOUTH ACADEMIC ANNUAL CONFERENCE OF CHINESE ASSOCIATION OF AUTOMATION, YAC 2024, 2024, : 1392 - 1395
  • [25] A hybrid machine learning model for intrusion detection in wireless sensor networks leveraging data balancing and dimensionality reduction
    Talukder, Md. Alamin
    Khalid, Majdi
    Sultana, Nasrin
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [26] Toward Efficient Intrusion Detection System Using Hybrid Deep Learning Approach
    Aldallal, Ammar
    SYMMETRY-BASEL, 2022, 14 (09):
  • [27] CNN-BiLSTM: A Hybrid Deep Learning Approach for Network Intrusion Detection System in Software-Defined Networking With Hybrid Feature Selection
    Ben Said, Rachid
    Sabir, Zakaria
    Askerzade, Iman
    IEEE ACCESS, 2023, 11 : 138732 - 138747
  • [28] A Deep Reinforcement Learning based Intrusion Detection Strategy for Smart Vehicular Networks
    Wang, Zhihao
    Jiang, Dingde
    Lv, Zhihan
    Song, Houbing
    IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,
  • [29] Deep Transfer Learning Based Intrusion Detection System for Electric Vehicular Networks
    Mehedi, Sk Tanzir
    Anwar, Adnan
    Rahman, Ziaur
    Ahmed, Kawsar
    SENSORS, 2021, 21 (14)
  • [30] A deep learning approach for effective intrusion detection in wireless networks using CNN
    Riyaz, B.
    Ganapathy, Sannasi
    SOFT COMPUTING, 2020, 24 (22) : 17265 - 17278