Superhydrophobic Surface-Enhanced Raman Spectroscopy (SERS) Substrates for Sensitive Detection of Trace Nanoplastics in Water

被引:0
|
作者
Xing, Feiyue [1 ]
Duan, Weiman [1 ]
Tang, Jiaxi [1 ]
Zhou, Ying [1 ]
Guo, Zeji [1 ]
Zhang, Han [1 ]
Xiong, Jian [2 ]
Fan, Meikun [1 ]
机构
[1] Southwest Jiaotong Univ, Fac Geosci & Environm Engn, Chengdu 610031, Sichuan, Peoples R China
[2] Tibet Univ, Sch Ecol & Environm, Key Lab Environm Engn & Pollut Control Plateau Tib, Lhasa 850000, Xizang, Peoples R China
基金
中国国家自然科学基金;
关键词
MICROPLASTICS;
D O I
10.1021/acs.analchem.4c05554
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments. Superhydrophobic SERS substrates were prepared by using a liquid-liquid self-assembly method. The superhydrophobicity facilitated analyte enrichment, and monolayer Au nanoparticles (AuNPs) enhanced the Raman signals. The detection limit for Raman probe crystal violet (CV) using this substrate reached nanomolar (10-9 M), with an RSD of 9.96% across a 40 x 40 mu m2 area (441 spots), demonstrating excellent sensitivity and reproducibility. This method successfully detected polystyrene (PS) plastics ranging from 30 to 1000 nm in water with concentrations as low as 0.03 mu g/mL. Additionally, nanoscale polyethylene terephthalate (PET) particles were detected in bottled water samples. This approach offers a promising platform for analyzing trace nanoplastics in environmental water samples and addresses the needs of environmental monitoring.
引用
收藏
页码:2293 / 2299
页数:7
相关论文
共 50 条
  • [21] The Variety of Substrates for Surface-enhanced Raman Spectroscopy
    Mikac, L.
    Gotic, M.
    Gebavi, H.
    Ivanda, M.
    PROCEEDINGS OF THE 2017 IEEE 7TH INTERNATIONAL CONFERENCE NANOMATERIALS: APPLICATION & PROPERTIES (NAP), 2017,
  • [22] Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)
    Hudson, Stephen D.
    Chumanov, George
    ANALYTICAL AND BIOANALYTICAL CHEMISTRY, 2009, 394 (03) : 679 - 686
  • [23] Surface-enhanced Raman spectroscopy (SERS): progress and trends
    Dana Cialla
    Anne März
    René Böhme
    Frank Theil
    Karina Weber
    Michael Schmitt
    Jürgen Popp
    Analytical and Bioanalytical Chemistry, 2012, 403 : 27 - 54
  • [24] Bioaerosol characterization by surface-enhanced Raman spectroscopy (SERS)
    Sengupta, A.
    Laucks, M.L.
    Dildine, N.
    Drapala, E.
    Davis, E.J.
    Journal of Aerosol Science, 1600, 36 (5-6): : 651 - 664
  • [25] Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy)
    Stephen D. Hudson
    George Chumanov
    Analytical and Bioanalytical Chemistry, 2009, 394 : 679 - 686
  • [26] Three-dimensional plasmonic substrate as surface-enhanced Raman spectroscopy (SERS) tool for the detection of trace chemicals
    Kaur, Navneet
    Das, Gautam
    JOURNAL OF RAMAN SPECTROSCOPY, 2024, 55 (04) : 473 - 480
  • [27] Applications of surface-enhanced Raman spectroscopy (SERS) to counterterrorism
    Alexander, TA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U404 - U404
  • [28] Detection and Quantitation of Trace Fentanyl in Heroin by Surface-Enhanced Raman Spectroscopy
    Haddad, Abed
    Comanescu, Mircea A.
    Green, Omar
    Kubic, Thomas A.
    Lombardi, John R.
    ANALYTICAL CHEMISTRY, 2018, 90 (21) : 12678 - 12685
  • [29] A nonmetal substrate of surface-enhanced Raman spectroscopy for trace fentanyl detection
    Lian, Zheng
    Lu, Chunqing
    Sun, Qian
    Cheng, Jiaolong
    Miao, Cuiying
    Chen, Zhenqian
    JOURNAL OF RAMAN SPECTROSCOPY, 2023, 54 (06) : 580 - 586
  • [30] Surface-enhanced Raman spectroscopy for trace-level detection of explosives
    Botti, S.
    Cantarini, L.
    Palucci, A.
    JOURNAL OF RAMAN SPECTROSCOPY, 2010, 41 (08) : 866 - 869