Liquid-Vapor phase separation under shear by a pseudopotential lattice Boltzmann method

被引:0
|
作者
Lin, Chuandong [1 ,2 ,3 ]
Shen, Sisi [1 ]
Wang, Shuange [1 ]
Hou, Guoxing [4 ]
Fei, Linlin [5 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
[2] Tsinghua Univ, Dept Energy & Power Engn, Key Lab Thermal Sci & Power Engn, Minist Educ, Beijing 100084, Peoples R China
[3] Natl Univ Singapore, Dept Mech Engn, 10 Kent Ridge Crescent, Singapore 119260, Singapore
[4] China Jiliang Univ, Coll Metrol Measurement & Instrument, Hangzhou 310018, Peoples R China
[5] Xi An Jiao Tong Univ, Sch Energy & Power Engn, Key Lab Thermo Fluid Sci & Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
phase separation; multiphase flow; shear flow; lattice Boltzmann method; MULTIPHASE FLOW; SIMULATION; EQUATION; MODEL; GAS;
D O I
10.1088/1572-9494/adab60
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the liquid-vapor phase separation under viscous shear is investigated by using a pseudopotential central moment lattice Boltzmann method. Physically, the multiphase shear flow is governed by two competing mechanisms: surface tension and shear force. It is interesting to find that the liquid tends to form a droplet when the surface tension dominates under conditions of low temperature, shear velocity, and viscosity, and in larger domain size. Otherwise, the liquid tends to form a band if shear force dominates. Moreover, the average density gradient is used as a physical criterion to distinguish the spinodal decomposition and domain growth. Both spatial and temporal changes of density are studied during the phase separation under shear.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Force approach for the pseudopotential lattice Boltzmann method
    Czelusniak, L. E.
    Mapelli, V. P.
    Guzella, M. S.
    Cabezas-Gomez, L.
    Wagner, Alexander J.
    PHYSICAL REVIEW E, 2020, 102 (03)
  • [32] Generalized lattice Boltzmann method with multirange pseudopotential
    Sbragaglia, M.
    Benzi, R.
    Biferale, L.
    Succi, S.
    Sugiyama, K.
    Toschi, F.
    PHYSICAL REVIEW E, 2007, 75 (02):
  • [33] Double droplet splashing on a thin liquid film with a pseudopotential lattice Boltzmann method
    Yuan, Hao
    Peng, Haonan
    He, Xiaolong
    Chen, Liang
    Zhou, Jiayu
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2021, 15 (01) : 964 - 984
  • [34] Simulating Gas-Liquid Flows by Means of a Pseudopotential Lattice Boltzmann Method
    Kamali, M. R.
    Van den Akker, H. E. A.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, 52 (33) : 11365 - 11377
  • [35] Separate-phase model and its lattice Boltzmann algorithm for liquid-vapor two-phase flows in porous media
    Lei, Shurong
    Shi, Yong
    PHYSICAL REVIEW E, 2019, 99 (05)
  • [36] Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics
    Kalarakis, A.N.
    Burganos, V.N.
    Payatakes, A.C.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2002, 65 (05): : 1 - 056702
  • [37] Reduction of spurious velocity in finite difference lattice Boltzmann models for liquid-vapor systems
    Cristea, A
    Sofonea, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2003, 14 (09): : 1251 - 1266
  • [38] Lattice Boltzmann study on the contact angle and contact line dynamics of liquid-vapor interfaces
    Zhang, JF
    Kwok, DY
    LANGMUIR, 2004, 20 (19) : 8137 - 8141
  • [39] Galilean-invariant lattice-Boltzmann simulation of liquid-vapor interface dynamics
    Kalarakis, AN
    Burganos, VN
    Payatakes, AC
    PHYSICAL REVIEW E, 2002, 65 (05):
  • [40] Finite-difference lattice Boltzmann model with flux limiters for liquid-vapor systems
    Sofonea, V.
    Lamura, A.
    Gonnella, G.
    Cristea, A.
    Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 2004, 70 (4 2): : 046702 - 1