SODA-RRT: Safe Optimal Dynamics-Aware Motion Planning

被引:0
|
作者
Niknejad, Nariman [1 ]
Esmzad, Ramin [1 ]
Modares, Hamidreza [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 28期
基金
美国国家科学基金会;
关键词
Motion planning; Invariant sets; Linear matrix inequalities (LMIs); Collision avoidance; Optimal Control; Safe Control;
D O I
10.1016/j.ifacol.2025.01.104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a performance-aware motion planning approach that generates collision-free paths with guaranteed optimality using invariant sets. The proposed planner constructs a sequence of conflict-free invariant sets, within which closed-loop trajectories maintain safety and performance criteria. Randomly generated waypoints serve as the center for these invariant sets, which are then connected to form a path from the initial to the target point. For each waypoint, an optimization problem determines the largest conflict-free zone and a safe-optimal controller. The novel algorithm termed Safe Optimal Dynamics-Aware Motion Planning (SODA-RRT), incorporates performance-reachability between connected waypoints, thus reducing the need for frequent re-planning. The method's efficacy is demonstrated through spacecraft motion planning scenarios involving debris avoidance, showcasing its potential for real-world applications. Copyright (c) 2024 The Authors.
引用
收藏
页码:863 / 868
页数:6
相关论文
共 50 条
  • [21] Safe and Smooth Motion Planning for Mecanum-Wheeled Robot Using Improved RRT and Cubic Spline
    Sun, Yuxi
    Zhang, Chengrui
    Sun, Pengcheng
    Liu, Chang
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2020, 45 (04) : 3075 - 3090
  • [22] Safe and Smooth Motion Planning for Mecanum-Wheeled Robot Using Improved RRT and Cubic Spline
    Yuxi Sun
    Chengrui Zhang
    Pengcheng Sun
    Chang Liu
    Arabian Journal for Science and Engineering, 2020, 45 : 3075 - 3090
  • [23] Provably Safe and Efficient Motion Planning with Uncertain Human Dynamics
    Li, Shen
    Figueroa, Nadia
    Shah, Ankit
    Shah, Julie A.
    ROBOTICS: SCIENCE AND SYSTEM XVII, 2021,
  • [24] Boundary-aware value function generation for safe stochastic motion planning
    Xu, Junhong
    Yin, Kai
    Gregory, Jason M.
    Hauser, Kris
    Liu, Lantao
    INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2024, 43 (12): : 1936 - 1958
  • [25] Smooth-RRT*: Asymptotically Optimal Motion Planning for Mobile Robots under Kinodynamic Constraints
    Kang, Yiting
    Yang, Zhi
    Zeng, Riya
    Wu, Qi
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 8402 - 8408
  • [26] Evaluation of nonlinear dynamics using optimal motion planning
    Herman, Przemyslaw
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2006, 128 (04): : 995 - 998
  • [27] Safe Motion Planning under Partial Observability with an Optimal Deterministic Planner
    Johnson, Jeffrey Kane
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 689 - 694
  • [28] Benchmarking the utility of maps of dynamics for human-aware motion planning
    Swaminathan, Chittaranjan Srinivas
    Kucner, Tomasz Piotr
    Magnusson, Martin
    Palmieri, Luigi
    Molina, Sergi
    Mannucci, Anna
    Pecora, Federico
    Lilienthal, Achim J.
    FRONTIERS IN ROBOTICS AND AI, 2022, 9
  • [29] LQR-RRT*: Optimal Sampling-Based Motion Planning with Automatically Derived Extension Heuristics
    Perez, Alejandro
    Platt, Robert, Jr.
    Konidaris, George
    Kaelbling, Leslie
    Lozano-Perez, Tomas
    2012 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2012, : 2537 - 2542
  • [30] Neural Network Approximation Based Near-Optimal Motion Planning With Kinodynamic Constraints Using RRT
    Li, Yang
    Cui, Rongxin
    Li, Zhijun
    Xu, Demin
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (11) : 8718 - 8729