SODA-RRT: Safe Optimal Dynamics-Aware Motion Planning

被引:0
|
作者
Niknejad, Nariman [1 ]
Esmzad, Ramin [1 ]
Modares, Hamidreza [1 ]
机构
[1] Michigan State Univ, Dept Mech Engn, E Lansing, MI 48824 USA
来源
IFAC PAPERSONLINE | 2024年 / 58卷 / 28期
基金
美国国家科学基金会;
关键词
Motion planning; Invariant sets; Linear matrix inequalities (LMIs); Collision avoidance; Optimal Control; Safe Control;
D O I
10.1016/j.ifacol.2025.01.104
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces a performance-aware motion planning approach that generates collision-free paths with guaranteed optimality using invariant sets. The proposed planner constructs a sequence of conflict-free invariant sets, within which closed-loop trajectories maintain safety and performance criteria. Randomly generated waypoints serve as the center for these invariant sets, which are then connected to form a path from the initial to the target point. For each waypoint, an optimization problem determines the largest conflict-free zone and a safe-optimal controller. The novel algorithm termed Safe Optimal Dynamics-Aware Motion Planning (SODA-RRT), incorporates performance-reachability between connected waypoints, thus reducing the need for frequent re-planning. The method's efficacy is demonstrated through spacecraft motion planning scenarios involving debris avoidance, showcasing its potential for real-world applications. Copyright (c) 2024 The Authors.
引用
收藏
页码:863 / 868
页数:6
相关论文
共 50 条
  • [1] Dynamics-aware Optimal Power Flow
    Mallada, Enrique
    Tang, Ao
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 1646 - 1652
  • [2] Kinodynamic RRT*: Asymptotically Optimal Motion Planning for Robots with Linear Dynamics
    Webb, Dustin J.
    van den Berg, Jur
    2013 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2013, : 5054 - 5061
  • [3] Human-Aware RRT-Connect: Motion Planning for Safe Human-Robot Collaboration
    Rajendran, Vidyasagar
    Carreno-Medrano, Pamela
    Fisher, Wesley
    Kulic, Dana
    2021 30TH IEEE INTERNATIONAL CONFERENCE ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2021, : 15 - 22
  • [4] RRT*-Connect: Faster, Asymptotically Optimal Motion Planning
    Klemm, Sebastian
    Oberlaender, Jan
    Hermann, Andreas
    Roennau, Arne
    Schamm, Thomas
    Zoellner, J. Marius
    Dillmann, Ruediger
    2015 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2015, : 1670 - 1677
  • [5] IMPRINT: Interactional Dynamics-aware Motion Prediction in Teams using Multimodal Context
    Yasar, Mohammad samin
    Islam, Mofijul
    Iqbal, Tariq
    ACM TRANSACTIONS ON HUMAN-ROBOT INTERACTION, 2024, 13 (03)
  • [6] Dynamics-Aware Metric Embedding: Metric Learning in a Latent Space for Visual Planning
    Hong, Mineui
    Lee, Kyungjae
    Kang, Minjae
    Jung, Wonsuhk
    Oh, Songhwai
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (02): : 3388 - 3395
  • [7] EB-RRT: Optimal Motion Planning for Mobile Robots
    Wang, Jiankun
    Meng, Max Q. -H.
    Khatib, Oussama
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2020, 17 (04) : 2063 - 2073
  • [8] Fast Convergence RRT for Asymptotically-optimal Motion Planning
    Kang, Risheng
    Liu, Hong
    Wang, Zhi
    2016 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (ROBIO), 2016, : 2111 - 2116
  • [9] Triangular Geometry based Optimal Motion Planning using RRT*-Motion Planner
    Qureshi, Ahmed Hussain
    Mumtaz, Saba
    Iqbal, Khawaja Fahad
    Ayaz, Yasar
    Muhammad, Mannan Saeed
    Hasan, Osman
    Kim, Whoi Yul
    Ra, Moonsoo
    2014 IEEE 13TH INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL (AMC), 2014,
  • [10] Dynamics-aware Continuous-time Economic Dispatch and Optimal Automatic Generation Control
    Chakraborty, Pratyush
    Dhople, Sairaj
    Chen, Yu Christine
    Parvania, Masood
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1292 - 1298