Cell-type deconvolution for bulk RNA-seq data using single-cell reference: a comparative analysis and recommendation guideline

被引:0
|
作者
Xu, Xintian [1 ,2 ]
Li, Rui [1 ,2 ]
Mo, Ouyang [1 ,2 ]
Liu, Kai [1 ,3 ]
Li, Justin [4 ]
Hao, Pei [1 ,2 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Immun & Infect, Key Lab Mol Virol & Immunol, 320 Yueyang Rd, Shanghai 200031, Peoples R China
[2] Univ Chinese Acad Sci, 1 Yanqihu East Rd, Beijing 100039, Peoples R China
[3] Fudan Univ, Dept Colorectal Surg, Shanghai Canc Ctr, 270 Dongan Rd, Shanghai 200032, Peoples R China
[4] Univ Connecticut, Dept Math, 352 Mansfield Rd, Storrs, CT 06269 USA
基金
中国国家自然科学基金;
关键词
cell type deconvolution; immune infiltration; prediction accuracy; scRNA-seq reference; performance evaluation; IMMUNE CONTEXTURE; REVEALS; IMPACT;
D O I
10.1093/bib/bbaf031
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The accurate estimation of cell type proportions in tissues is crucial for various downstream analyses. With the increasing availability of single-cell sequencing data, numerous deconvolution methods that use single-cell RNA sequencing data as a reference have been developed. However, a unified understanding of how these deconvolution approaches perform in practical applications is still lacking. To address this, we systematically assessed the accuracy and robustness of nine deconvolution methods that use single-cell RNA sequencing data as a reference, evaluating them on real bulk data with cell proportions verified through flow cytometry, as well as simulated bulk data generated from five single-cell RNA sequencing datasets. Our study highlights the importance of several factors-including reference dataset construction strategies, dataset size, cell type subdivision, and cell type inconsistency-on the accuracy and robustness of deconvolution results. We also propose a set of recommended guidelines for software users in diverse scenarios.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data
    Alquicira-Hernandez, Jose
    Sathe, Anuja
    Ji, Hanlee P.
    Quan Nguyen
    Powell, Joseph E.
    GENOME BIOLOGY, 2019, 20 (01)
  • [22] Deconvolution analysis of cell-type expression from bulk tissues by integrating with single-cell expression reference
    Luo, Yutong
    Fan, Ruzong
    GENETIC EPIDEMIOLOGY, 2022, 46 (08) : 615 - 628
  • [23] scPred: accurate supervised method for cell-type classification from single-cell RNA-seq data
    Jose Alquicira-Hernandez
    Anuja Sathe
    Hanlee P. Ji
    Quan Nguyen
    Joseph E. Powell
    Genome Biology, 20
  • [24] Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
    Allen W. Zhang
    Ciara O’Flanagan
    Elizabeth A. Chavez
    Jamie L. P. Lim
    Nicholas Ceglia
    Andrew McPherson
    Matt Wiens
    Pascale Walters
    Tim Chan
    Brittany Hewitson
    Daniel Lai
    Anja Mottok
    Clementine Sarkozy
    Lauren Chong
    Tomohiro Aoki
    Xuehai Wang
    Andrew P Weng
    Jessica N. McAlpine
    Samuel Aparicio
    Christian Steidl
    Kieran R. Campbell
    Sohrab P. Shah
    Nature Methods, 2019, 16 : 1007 - 1015
  • [25] TransCluster: A Cell-Type Identification Method for single-cell RNA-Seq data using deep learning based on transformer
    Song, Tao
    Dai, Huanhuan
    Wang, Shuang
    Wang, Gan
    Zhang, Xudong
    Zhang, Ying
    Jiao, Linfang
    FRONTIERS IN GENETICS, 2022, 13
  • [26] Probabilistic cell-type assignment of single-cell RNA-seq for tumor microenvironment profiling
    Zhang, Allen W.
    O'Flanagan, Ciara
    Chavez, Elizabeth A.
    Lim, Jamie L. P.
    Ceglia, Nicholas
    McPherson, Andrew
    Wiens, Matt
    Walters, Pascale
    Chan, Tim
    Hewitson, Brittany
    Lai, Daniel
    Mottok, Anja
    Sarkozy, Clementine
    Chong, Lauren
    Aoki, Tomohiro
    Wang, Xuehai
    Weng, Andrew P.
    McAlpine, Jessica N.
    Aparicio, Samuel
    Steidl, Christian
    Campbell, Kieran R.
    Shah, Sohrab P.
    NATURE METHODS, 2019, 16 (10) : 1007 - +
  • [27] Estimation of immune cell content in tumor using single-cell RNA-seq reference data
    Xiaoqing Yu
    Y. Ann Chen
    Jose R. Conejo-Garcia
    Christine H. Chung
    Xuefeng Wang
    BMC Cancer, 19
  • [28] Estimation of immune cell content in tumor using single-cell RNA-seq reference data
    Yu, Xiaoqing
    Chen, Y. Ann
    Conejo-Garcia, Jose R.
    Chung, Christine H.
    Wang, Xuefeng
    BMC CANCER, 2019, 19 (1)
  • [29] CellTICS: an explainable neural network for cell-type identification and interpretation based on single-cell RNA-seq data
    Yin, Qingyang
    Chen, Liang
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (01)
  • [30] Estimation of immune cell content in bulk tumour tissue using reference profiles from single-cell RNA-seq data
    Schelker, Max
    Du, Jinyan
    Feau, Sonia
    Klipp, Edda
    Schoeberl, Birgit
    MacBeath, Gavin
    Raue, Andreas
    CANCER RESEARCH, 2017, 77