Studying the Impact of Edge Privacy on Link Prediction in Temporal Graphs

被引:0
|
作者
Salas, Julian [1 ]
Borrego, Carlos [2 ]
机构
[1] Univ Oberta Catalunya, Fac Comp Sci Multimedia & Telecommun, Barcelona, Spain
[2] Autonomous Univ Barcelona, Dept Informat & Commun Engn, Bellaterra, Spain
来源
MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE, MDAI 2024 | 2024年 / 14986卷
关键词
Local Differential Privacy; Noise Graph Addition; Link Prediction;
D O I
10.1007/978-3-031-68208-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic graphs are essential for analyzing complex systems like social or communication networks, allowing researchers to study behaviors and evolution over time. Edge privacy, a key concern in dynamic graphs, involves safeguarding sensitive information about individual connections while the network structure evolves. This paper explores the feasibility of protecting dynamic graphs with differential privacy and using them for effective link prediction, emphasizing the importance of integrating privacy measures into dynamic graph analysis. We evaluate the performance of link prediction algorithms on protected graphs, demonstrating how privacy-enhancing techniques can bolster the robustness and confidentiality of link prediction within evolving network environments. Our study contributes towards establishing more secure and dependable analyses of dynamic network structures by showcasing the practical benefits of edge privacy in link prediction tasks.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [21] Link prediction in graphs with autoregressive features
    1600, Microtome Publishing (15):
  • [22] Synthetic graphs for link prediction benchmarking
    Vlaskin, Alexey
    Altmann, Eduardo G.
    JOURNAL OF PHYSICS-COMPLEXITY, 2025, 6 (01):
  • [23] Edge contrastive learning for link prediction
    Liu, Lei
    Xie, Qianqian
    Wen, Weidong
    Zhu, Jiahui
    Peng, Min
    INFORMATION PROCESSING & MANAGEMENT, 2024, 61 (06)
  • [24] Edge-Disjoint Branchings in Temporal Graphs
    Campos, Victor
    Lopes, Raul
    Marino, Andrea
    Silva, Ana
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 112 - 125
  • [25] The bipartite edge frustration of extension of splice and link graphs
    Yarahmadi, Zahra
    APPLIED MATHEMATICS LETTERS, 2010, 23 (09) : 1077 - 1081
  • [26] Walk2Privacy: Limiting target link privacy disclosure against the adversarial link prediction
    Jiang, Zhongyuan
    Ma, Jianfeng
    Yu, Philip S.
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 1381 - 1388
  • [27] Towards Event Prediction in Temporal Graphs
    Fan, Wenfei
    Jin, Ruochun
    Lu, Ping
    Tian, Chao
    Xu, Ruiqi
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (09): : 1861 - 1874
  • [28] Repeating Link Prediction over Dynamic Graphs
    Montesi, Daniele
    Girdzijauskas, Sarunas
    Vlassov, Vladimir
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 4420 - 4428
  • [29] A hybrid method of link prediction in directed graphs
    Ghorbanzadeh, Hossien
    Sheikhahmadi, Amir
    Jalili, Mahdi
    Sulaimany, Sadegh
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 165
  • [30] SimplE Embedding for Link Prediction in Knowledge Graphs
    Kazemi, Seyed Mehran
    Poole, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31