Studying the Impact of Edge Privacy on Link Prediction in Temporal Graphs

被引:0
|
作者
Salas, Julian [1 ]
Borrego, Carlos [2 ]
机构
[1] Univ Oberta Catalunya, Fac Comp Sci Multimedia & Telecommun, Barcelona, Spain
[2] Autonomous Univ Barcelona, Dept Informat & Commun Engn, Bellaterra, Spain
关键词
Local Differential Privacy; Noise Graph Addition; Link Prediction;
D O I
10.1007/978-3-031-68208-7_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Dynamic graphs are essential for analyzing complex systems like social or communication networks, allowing researchers to study behaviors and evolution over time. Edge privacy, a key concern in dynamic graphs, involves safeguarding sensitive information about individual connections while the network structure evolves. This paper explores the feasibility of protecting dynamic graphs with differential privacy and using them for effective link prediction, emphasizing the importance of integrating privacy measures into dynamic graph analysis. We evaluate the performance of link prediction algorithms on protected graphs, demonstrating how privacy-enhancing techniques can bolster the robustness and confidentiality of link prediction within evolving network environments. Our study contributes towards establishing more secure and dependable analyses of dynamic network structures by showcasing the practical benefits of edge privacy in link prediction tasks.
引用
收藏
页码:177 / 186
页数:10
相关论文
共 50 条
  • [1] Tensor Decomposition for Link Prediction in Temporal Knowledge Graphs
    Chekol, Melisachew Wudage
    PROCEEDINGS OF THE 11TH KNOWLEDGE CAPTURE CONFERENCE (K-CAP '21), 2021, : 253 - 256
  • [2] Leveraging Static Models for Link Prediction in Temporal Knowledge Graphs
    Radstok, Wessel
    Chekol, Mel
    Velegrakis, Yannis
    2021 IEEE 33RD INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2021), 2021, : 1034 - 1041
  • [3] Edge Exploration of Temporal Graphs
    Bumpus, Benjamin Merlin
    Meeks, Kitty
    COMBINATORIAL ALGORITHMS, IWOCA 2021, 2021, 12757 : 107 - 121
  • [4] Edge Exploration of Temporal Graphs
    Benjamin Merlin Bumpus
    Kitty Meeks
    Algorithmica, 2023, 85 : 688 - 716
  • [5] Edge Exploration of Temporal Graphs
    Bumpus, Benjamin Merlin
    Meeks, Kitty
    ALGORITHMICA, 2023, 85 (03) : 688 - 716
  • [6] Anchor Link Prediction via Network Structural Role for Privacy Leakage in Edge Computing
    Wang, Huanran
    Yang, Wu
    Lv, Jiguang
    Wang, Hanbo
    Tan, Jingwen
    Man, Dapeng
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 6030 - 6036
  • [7] Link Prediction in Stagewise Graphs
    Dewulf, Pieter
    Stock, Michiel
    De Baets, Bernard
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 3252 - 3264
  • [8] Link Prediction in Evolutionary Graphs
    Adrian, Kemo
    Chocron, Paula
    Confalonieri, Roberto
    Ferrer, Xavier
    Giraldez-Cru, Jeslis
    ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2016, 288 : 187 - 196
  • [9] Exploring the impact of literal transformations within Knowledge Graphs for Link Prediction
    Blum, Moritz
    Ell, Basil
    Cimiano, Philipp
    PROCEEDINGS OF THE 11TH INTERNATIONAL JOINT CONFERENCE ON KNOWLEDGE GRAPHS, IJCKG 2022, 2022, : 48 - 54
  • [10] Temporal Knowledge Graph Link Prediction Using Synergized Large Language Models and Temporal Knowledge Graphs
    Chen, Yao
    Shen, Yuming
    NEURAL COMPUTING FOR ADVANCED APPLICATIONS, NCAA 2024, PT III, 2025, 2183 : 33 - 45