Numerical investigation of thermal radiation effects on chemical reactive flow of microbes in hybrid nanofluid over a rotating disk

被引:0
|
作者
Aoudia, Mouloud [1 ]
Benabdallah, Faiza [2 ]
Abbas, Ansar [3 ]
Khidhir, Dana Mohammad [4 ,5 ]
Ching, Dennis Ling Chuan [6 ]
Memon, Abid Ali [6 ]
Abbas, Munawar [7 ]
Khan, Ilyas [8 ]
Liaqat, Saba [9 ]
Galal, Ahmed M. [10 ,11 ]
机构
[1] Northern Border Univ, Coll Engn, Dept Ind Engn, POB 1321, Ar Ar 91431, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Coll Engn, Dept Ind & Syst Engn, POB 84428, Riyadh 11671, Saudi Arabia
[3] Gomal Univ, Dept Chem, Dear Ismail Khan 29111, Pakistan
[4] Knowledge Univ, Coll Engn, Dept Petr Engn, Erbil 44001, Iraq
[5] Al Kitab Univ, Dept Petr Engn, Altun Kupri, Iraq
[6] Univ Teknol PETRONAS, Fundamental & Appl Sci Dept, Perak 32610, Malaysia
[7] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Bioengn, Chennai 602105, Tamil Nadu, India
[8] Majmaah Univ, Coll Sci Al Zulfi, Dept Math, Al Majmaah 11952, Saudi Arabia
[9] Islamia Univ Bahawalpur, Inst Phys, Bahawalpur 63100, Pakistan
[10] Prince Sattam Bin Abdulaziz Univ, Coll Engn Wadi Alddawasir, Dept Mech Engn, Al Kharj, Saudi Arabia
[11] Mansoura Univ, Fac Engn, Prod Engn & Mech Design Dept, PO 35516, Mansoura, Egypt
关键词
Hybrid nanofluid; Oxytactic and gyrotactic microorganisms; Marangoni convective flow; Thermal radiation; Heat generation; MHD; MIXED CONVECTION; HEAT-TRANSFER;
D O I
10.1016/j.jrras.2025.101435
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study employs numerical modelling to investigate the outcome of thermal radiation on chemical reactive flow of a hybrid nanofluid along a disk with oxytactic and gyrotactic microbes are examined. The heat generation and Stefan blowing impacts are taken into account. The hybrid (Diamond - Co3O4/H2O) nanofluid flow model contains of nanoparticles of diamond (ND), Cobalt oxide (Co3O4) dissolved in water. The constitutive equations, encompassing the solutal, energy, momentum, and gyrotactic microbes' equations, are formulated and converted using the similarity approximation into a system of partial differential equations (PDEs). These resulting equations are then mathematically solved utilizing the Bvp4c method. There are many uses for the proposed model in the domains of engineering, biomedicine, and industry. Increased heat transmission is essential in the design of thermal management systems, such as cooling mechanisms in microelectronics. The study helps to understand fluid flow dynamics in lab-on-a-chip devices and biosensors in the biomedical industry. Microorganisms in the hybrid nanofluid flow also provide information about bioconvection processes, which is pertinent to microbial fuel cells and wastewater treatment. Additionally, the rotating disk configuration and Marangoni convection principles ensure accuracy and efficiency in industrial operations like coating technologies, thin-film deposition, and crystal growth.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Investigation of thermal stratification and nonlinear thermal radiation in Darcy-Forchheimer transport of hybrid nanofluid by rotating disk with Marangoni convection
    Manzoor U.
    Muhammad T.
    Farooq U.
    Waqas H.
    International Journal of Ambient Energy, 2022, 43 (01) : 6724 - 6731
  • [42] Revolutionizing heat transfer: exploring ternary hybrid nanofluid slip flow on an inclined rotating disk with thermal radiation and viscous dissipation effects
    Muhammad Usman
    Mounirah Areshi
    Naseem Khan
    Mohamed Sayed Eldin
    Journal of Thermal Analysis and Calorimetry, 2023, 148 : 9131 - 9144
  • [43] Enhancement of heat transfer in thin-film flow of a hybrid nanofluid over an inclined rotating disk subject to thermal radiation and viscous dissipation
    Alharbi, Amal F.
    Alhawiti, Mona
    Usman, Muhammad
    Ullah, Ikram
    Alam, Mohammad Mahtab
    Bilal, Muhammad
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 107
  • [44] Thermal transport of magnetized hybrid nanofluid swirling over a disk surface with Hall current and thermal radiation effects
    Ahmed, Jawad
    Gunaime, Nevine M.
    Nazir, Faisal
    NUMERICAL HEAT TRANSFER PART A-APPLICATIONS, 2023,
  • [45] ENTROPY ANALYSIS OF HYBRID NANOFLUID FLOW OVER A ROTATING POROUS DISK: A MULTIVARIATE ANALYSIS
    Prakash, J.
    Tripathi, Dharmendra
    Akkurt, Nevzat
    Shedd, Tim
    SPECIAL TOPICS & REVIEWS IN POROUS MEDIA-AN INTERNATIONAL JOURNAL, 2023, 14 (04) : 45 - 69
  • [46] Multiple solutions of the unsteady hybrid nanofluid flow over a rotating disk with stability analysis
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    EUROPEAN JOURNAL OF MECHANICS B-FLUIDS, 2022, 94 : 121 - 127
  • [47] ENTROPY ANALYSIS OF HYBRID NANOFLUID FLOW OVER A ROTATING POROUS DISK: A MULTIVARIATE ANALYSIS
    Prakash, J.
    Tripathi, Dharmendra
    Akkurt, Nevzat
    Shedd, Tim
    Special Topics and Reviews in Porous Media, 2023, 14 (04): : 45 - 69
  • [48] Applications of solar radiation toward the slip flow of a non-Newtonian viscoelastic hybrid nanofluid over a rotating disk
    Ramzan, Muhammad
    Saeed, Anwar
    Dawar, Abdullah
    Lone, Showkat Ahmad
    Kumam, Poom
    Watthayu, Wiboonsak
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2022, 102 (12):
  • [49] Stagnation point flow of hybrid nanofluid flow passing over a rotating sphere subjected to thermophoretic diffusion and thermal radiation
    Khalid Abdulkhaliq M. Alharbi
    Muhammad Bilal
    Aatif Ali
    Sayed M. Eldin
    Amal F. Soliman
    Mati Ur Rahman
    Scientific Reports, 13
  • [50] Stagnation point flow of hybrid nanofluid flow passing over a rotating sphere subjected to thermophoretic diffusion and thermal radiation
    Alharbi, Khalid Abdulkhaliq M.
    Bilal, Muhammad
    Ali, Aatif
    Eldin, Sayed M.
    Soliman, Amal F.
    Rahman, Mati Ur
    SCIENTIFIC REPORTS, 2023, 13 (01)