Near-Optimal Policy Optimization for Correlated Equilibrium in General-Sum Markov Games

被引:0
|
作者
Cai, Yang [1 ]
Luo, Haipeng [2 ]
Wei, Chen-Yu [3 ]
Zheng, Weiqiang [1 ]
机构
[1] Yale Univ, New Haven, CT 06520 USA
[2] Univ Southern Calif, Los Angeles, CA 90007 USA
[3] Univ Virginia, Charlottesville, VA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We study policy optimization algorithms for computing correlated equilibria in multiplayer general-sum Markov Games. Previous results achieve (O) over tilde (T-1/2) convergence rate to a correlated equilibrium and an accelerated (O) over tilde (T-3/4) convergence rate to the weaker notion of coarse correlated equilibrium. In this paper, we improve both results significantly by providing an uncoupled policy optimization algorithm that attains a near-optimal (O) over tilde (T-1) convergence rate for computing a correlated equilibrium. Our algorithm is constructed by combining two main elements (i) smooth value updates and (ii) the optimisticfollow-the-regularized-leader algorithm with the log barrier regularizer.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Near-Optimal No-Regret Learning in General Games
    Daskalakis, Constantinos
    Fishelson, Maxwell
    Golowich, Noah
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [22] Policy Gradient Methods Find the Nash Equilibrium in N-player General-sum Linear-quadratic Games
    Hambly, Ben
    Xu, Renyuan
    Yang, Huining
    JOURNAL OF MACHINE LEARNING RESEARCH, 2023, 24
  • [23] Convergent gradient ascent with momentum in general-sum games
    Zhang, HX
    Huang, ST
    NEUROCOMPUTING, 2004, 61 (1-4) : 449 - 454
  • [24] Near-Optimal No-Regret Algorithms for Zero-Sum Games
    Daskalakis, Constantinos
    Deckelbaum, Alan
    Kim, Anthony
    PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2011, : 235 - 254
  • [25] Decentralized Online Learning in General-Sum Stackelberg Games
    Yu, Yaolong
    Chen, Haipeng
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2024, 244 : 4056 - 4077
  • [26] Near-optimal no-regret algorithms for zero-sum games
    Daskalakis, Constantinos
    Deckelbaum, Alan
    Kim, Anthony
    GAMES AND ECONOMIC BEHAVIOR, 2015, 92 : 327 - 348
  • [27] Computing Stackelberg Equilibria of Large General-Sum Games
    Blum, Avrim
    Haghtalab, Nika
    Hajiaghayi, MohammadTaghi
    Seddighin, Saeed
    ALGORITHMIC GAME THEORY (SAGT 2019), 2019, 11801 : 168 - 182
  • [28] General-sum stochastic games: Verifiability conditions for Nash equilibria
    Prasad, H. L.
    Bhatnagar, S.
    AUTOMATICA, 2012, 48 (11) : 2923 - 2930
  • [29] OPTIMISTIC GRADIENT DESCENT ASCENT IN GENERAL-SUM BILINEAR GAMES
    DE Montbrun, Etienne
    Renault, Jerome
    JOURNAL OF DYNAMICS AND GAMES, 2024,
  • [30] A new learning algorithm for cooperative agents in general-sum games
    Song, Mei-Ping
    An, Ju-Bai
    Chen, Rong
    PROCEEDINGS OF 2007 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2007, : 50 - 54