Sorting genomes by prefix double-cut-and-joins

被引:0
|
作者
Fertin, Guillaume [1 ]
Jean, Geraldine [1 ]
Labarre, Anthony [2 ]
机构
[1] Nantes Univ, Ecole Cent Nantes, CNRS, LS2N,UMR 6004, F-44000 Nantes, France
[2] Univ Gustave Eiffel, CNRS, Lab Informat Gaspard Monge, ENPC,ESIEE Paris,UPEM,LIGM,UMR 8049, F-77454 Marne la Vallee, France
关键词
Genome rearrangements; Prefix reversals; Prefix DC[!text type='Js']Js[!/text; Lower bounds; Algorithmics; Approximation algorithms; PERMUTATIONS;
D O I
10.1016/j.tcs.2024.114909
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper, we study the problem of sorting unichromosomal linear genomes by prefix double- cut-and-joins (or DCJs) in both the signed and the unsigned settings. Prefix DCJs cut the leftmost segment of a genome and any other segment, and recombine the severed endpoints in one of two possible ways: one of these options corresponds to a prefix reversal, which reverses the order of elements between the two cuts (as well as their signs in the signed case). Our main results are: (1) new structural lower bounds based on the breakpoint graph for sorting by unsigned prefix reversals, unsigned prefix DCJs, and signed prefix DCJs; (2) two polynomial-time algorithms for sorting by prefix DCJs, both in the signed case (which answers an open question of Labarre [1]) and in the unsigned case; (3) a 1-absolute approximation algorithm for sorting by unsigned prefix reversals for a specific class of permutations.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Improved upper bound for sorting permutations by prefix transpositions
    Nair, Pramod P.
    Sundaravaradhan, Rajan
    Chitturi, Bhadrachalam
    THEORETICAL COMPUTER SCIENCE, 2021, 896 : 158 - 167
  • [32] Sorting Permutations by Prefix and Suffix Versions of Reversals and Transpositions
    Lintzmayer, Carla Negri
    Dias, Zanoni
    LATIN 2014: THEORETICAL INFORMATICS, 2014, 8392 : 671 - 682
  • [33] Tighter upper bound for sorting permutations with prefix transpositions
    Chitturi, Bhadrachalam
    THEORETICAL COMPUTER SCIENCE, 2015, 602 : 22 - 31
  • [34] On Sorting of Signed Permutations by Prefix and Suffix Reversals and Transpositions
    Lintzmayer, Carla Negri
    Dias, Zanoni
    ALGORITHMS FOR COMPUTATIONAL BIOLOGY, 2014, 8542 : 146 - 157
  • [35] Algebraic double cut and join: A group-theoretic approach to the operator on multichromosomal genomes
    Bhatia S.
    Egri-Nagy A.
    Francis A.R.
    Journal of Mathematical Biology, 2015, 71 (5) : 1149 - 1178
  • [36] An Exact Algorithm to Compute the Double-Cut-and-Join Distance for Genomes with Duplicate Genes
    Shao, Mingfu
    Lin, Yu
    Moret, Bernard M. E.
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2015, 22 (05) : 425 - 435
  • [37] Optimal clustering of relations to improve sorting and partitioning for joins
    Harris, EP
    Ramamohanarao, K
    COMPUTER JOURNAL, 1997, 40 (07): : 416 - 434
  • [38] JOINS OF DOUBLE COSET SPACES
    BHATTARAI, HN
    FERNANDEZ, JW
    PACIFIC JOURNAL OF MATHEMATICS, 1982, 98 (02) : 271 - 280
  • [39] Sorting Linear Genomes with Rearrangements and Indels
    Braga, Marilia D. V.
    Stoye, Jens
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2015, 12 (03) : 500 - 506
  • [40] An (18/11)n upper bound for sorting by prefix reversals
    Chitturi, B.
    Fahle, W.
    Meng, Z.
    Morales, L.
    Shields, C. O.
    Sudborough, I. H.
    Voit, W.
    THEORETICAL COMPUTER SCIENCE, 2009, 410 (36) : 3372 - 3390